In inclusion detection in electrical impedance tomography, the support of perturbations (inclusion) from a known background conductivity is typically reconstructed from idealized continuum data modelled by a Neumann-to-Dirichlet map. Only few reconstruction methods apply when detecting indefinite inclusions, where the conductivity distribution has both more and less conductive parts relative to the background conductivity; one such method is the monotonicity method of Harrach, Seo, and Ullrich [
Citation: |
Figure 3.
(a) Two dimensional numerical phantom with positive part
Figure 4.
(a) Two dimensional numerical phantom with positive part
Figure 5.
(a) Three dimensional numerical phantom with positive part
[1] |
A. Abubakar, T. M. Habashy, M. Li and J. Liu, Inversion algorithms for large-scale geophysical electromagnetic measurements, Inverse Problems, 25 (2009), Article ID 123012, 30pp.
doi: 10.1088/0266-5611/25/12/123012.![]() ![]() ![]() |
[2] |
L. Borcea, Electrical impedance tomography, Inverse Problems, 18 (2002), 99-136.
doi: 10.1088/0266-5611/18/6/201.![]() ![]() ![]() |
[3] |
T. Brander, M. Kar and M. Salo, Enclosure method for the p-Laplace equation, Inverse Problems, 31 (2015), Article ID 045001, 16pp.
doi: 10.1088/0266-5611/31/4/045001.![]() ![]() ![]() |
[4] |
M. Brühl, Explicit characterization of inclusions in electrical impedance tomography, SIAM Journal on Mathematical Analysis, 32 (2001), 1327-1341.
doi: 10.1137/S003614100036656X.![]() ![]() ![]() |
[5] |
M. Brühl and M. Hanke, Numerical implementation of two noniterative methods for locating inclusions by impedance tomography, Inverse Problems, 16 (2000), 1029-1042.
doi: 10.1088/0266-5611/16/4/310.![]() ![]() ![]() |
[6] |
M. Cheney, D. Isaacson and J. C. Newell, Electrical impedance tomography, SIAM Review, 41 (1999), 85-101.
doi: 10.1137/S0036144598333613.![]() ![]() ![]() |
[7] |
H. Garde, Comparison of linear and non-linear monotonicity-based shape reconstruction using exact matrix characterizations, Inverse Problems in Science and Engineering, 26 (2018), 33-50.
doi: 10.1080/17415977.2017.1290088.![]() ![]() ![]() |
[8] |
H. Garde and K. Knudsen, Distinguishability revisited: Depth dependent bounds on reconstruction quality in electrical impedance tomography, SIAM Journal on Applied Mathematics, 77 (2017), 697-720.
doi: 10.1137/16M1072991.![]() ![]() ![]() |
[9] |
H. Garde and S. Staboulis, Convergence and regularization for monotonicity-based shape reconstruction in electrical impedance tomography, Numerische Mathematik, 135 (2017), 1221-1251.
doi: 10.1007/s00211-016-0830-1.![]() ![]() ![]() |
[10] |
B. Gebauer, Localized potentials in electrical impedance tomography, Inverse Problems and Imaging, 2 (2008), 251-269.
doi: 10.3934/ipi.2008.2.251.![]() ![]() ![]() |
[11] |
N. Grinberg and A. Kirsch, The factorization method for obstacles with a-priori separated sound-soft and sound-hard parts, Mathematics and Computers in Simulation, 66 (2004), 267-279.
doi: 10.1016/j.matcom.2004.02.011.![]() ![]() ![]() |
[12] |
M. Hanke and M. Brühl, Recent progress in electrical impedance tomography, Inverse Problems, 19 (2003), S65-S90, Special section on imaging.
doi: 10.1088/0266-5611/19/6/055.![]() ![]() ![]() |
[13] |
M. Hanke-Bourgeois and A. Kirsch, Sampling methods, in Handbook of Mathematical Methods in Imaging, Springer, 2015,591-647.
![]() ![]() |
[14] |
B. Harrach and M. N. Minh, Enhancing residual-based techniques with shape reconstruction features in electrical impedance tomography Inverse Problems, 32 (2016), Article ID 125002, 21pp.
doi: 10.1088/0266-5611/32/12/125002.![]() ![]() ![]() |
[15] |
B. Harrach and J. K. Seo, Exact shape-reconstruction by one-step linearization in electrical impedance tomography, SIAM Journal on Mathematical Analysis, 42 (2010), 1505-1518.
doi: 10.1137/090773970.![]() ![]() ![]() |
[16] |
B. Harrach, Recent progress on the factorization method for electrical impedance tomography, Computational and Mathematical Methods in Medicine, 2013 (2013), Article ID 425184, 8pp.
doi: 10.1155/2013/425184.![]() ![]() ![]() |
[17] |
B. Harrach and M. Ullrich, Monotonicity-based shape reconstruction in electrical impedance tomography, SIAM Journal on Mathematical Analysis, 45 (2013), 3382-3403.
doi: 10.1137/120886984.![]() ![]() ![]() |
[18] |
B. Harrach and M. Ullrich, Resolution guarantees in electrical impedance tomography, IEEE Transactions on Medical Imaging, 34 (2015), 1513-1521.
doi: 10.1109/tmi.2015.2404133.![]() ![]() |
[19] |
D. S. Holder (ed.), Electrical Impedance Tomography: Methods, History, and Applications, IOP publishing Ltd., 2005.
![]() |
[20] |
N. Hyvönen, Approximating idealized boundary data of electric impedance tomography by electrode measurements, Mathematical Models and Methods in Applied Sciences, 19 (2009), 1185-1202.
doi: 10.1142/S0218202509003759.![]() ![]() ![]() |
[21] |
N. Hyvönen and L. Mustonen, Smoothened complete electrode model, SIAM Journal on Applied Mathematics, 77 (2017), 2250-2271.
doi: 10.1137/17M1124292.![]() ![]() ![]() |
[22] |
M. Ikehata, Size estimation of inclusion, Journal of Inverse and Ill-Posed Problems, 6 (1998), 127-140.
doi: 10.1515/jiip.1998.6.2.127.![]() ![]() ![]() |
[23] |
M. Ikehata, How to draw a picture of an unknown inclusion from boundary measurements. Two mathematical inversion algorithms, Journal of Inverse and Ill-Posed Problems, 7 (1999), 255-271.
doi: 10.1515/jiip.1999.7.3.255.![]() ![]() ![]() |
[24] |
M. Ikehata, Reconstruction of the support function for inclusion from boundary measurements, Journal of Inverse and Ill-Posed Problems, 8 (2000), 367-378.
doi: 10.1515/jiip.2000.8.4.367.![]() ![]() ![]() |
[25] |
M. Ikehata, A regularized extraction formula in the enclosure method, Inverse Problems, 18 (2002), 435-440.
doi: 10.1088/0266-5611/18/2/309.![]() ![]() ![]() |
[26] |
H. Kang, J. K. Seo and D. Sheen, The inverse conductivity problem with one measurement: Stability and estimation of size, SIAM Journal on Mathematical Analysis, 28 (1997), 1389-1405.
doi: 10.1137/S0036141096299375.![]() ![]() ![]() |
[27] |
K. Karhunen, A. Seppänen, A. Lehikoinen, J. Blunt, J. P. Kaipio and P. J. M. Monteiro, Electrical resistance tomography for assessment of cracks in concrete, Materials Journal, 107 (2010), 523-531.
doi: 10.14359/51663973.![]() ![]() |
[28] |
K. Karhunen, A. Seppänen, A. Lehikoinen, P. J. M. Monteiro and J. P. Kaipio, Electrical resistance tomography imaging of concrete, Cement and Concrete Research, 40 (2010), 137-145.
![]() |
[29] |
A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford University Press, USA, 2008.
![]() ![]() |
[30] |
A. Lechleiter, A regularization technique for the factorization method, Inverse problems, 22 (2006), 1605-1625.
doi: 10.1088/0266-5611/22/5/006.![]() ![]() ![]() |
[31] |
A. Lechleiter, N. Hyvönen and H. Hakula, The factorization method applied to the complete electrode model of impedance tomography, SIAM Journal on Applied Mathematics, 68 (2008), 1097-1121.
doi: 10.1137/070683295.![]() ![]() ![]() |
[32] |
C. Miranda, Partial Differential Equations of Elliptic Type, Springer Berlin Heidelberg, second edition, 1970.
doi: 10.1007/978-3-662-35147-5.![]() ![]() ![]() |
[33] |
W. F. Osgood, A Jordan curve of positive area, Transactions of the American Mathematical Society, 4 (1903), 107-112.
doi: 10.1090/S0002-9947-1903-1500628-5.![]() ![]() ![]() |
[34] |
S. Schmitt, The factorization method for EIT in the case of mixed inclusions, Inverse Problems, 25 (2009), Article ID 065012, 20pp.
doi: 10.1088/0266-5611/25/6/065012.![]() ![]() ![]() |
[35] |
E. Somersalo, M. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM Journal on Applied Mathematics, 52 (1992), 1023-1040.
doi: 10.1137/0152060.![]() ![]() ![]() |
[36] |
A. Tamburrino, Monotonicity based imaging methods for elliptic and parabolic inverse problems, Journal of Inverse and Ill-posed Problems, 14 (2006), 633-642.
doi: 10.1515/156939406778474578.![]() ![]() ![]() |
[37] |
A. Tamburrino and G. Rubinacci, A new non-iterative inversion method for electrical resistance tomography, Inverse Problems, 18 (2002), 1809-1829.
doi: 10.1088/0266-5611/18/6/323.![]() ![]() ![]() |
[38] |
L. N. Trefethen and M. Embree, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators, Princeton University Press, Princeton, NJ, 2005.
![]() ![]() |
[39] |
G. Uhlmann, Electrical impedance tomography and Calderón's problem, Inverse Problems, 25 (2009), Article ID 123011, 39pp.
doi: 10.1088/0266-5611/25/12/123011.![]() ![]() ![]() |
[40] |
T. York, Status of electrical tomography in industrial applications, Journal of Electronic Imaging, 10 (2001), 608-619.
doi: 10.1117/1.1377308.![]() ![]() |