The unique determination of a measurable conductivity from the Dirichlet-to-Neumann map of the equation ${\rm{div}} (σ \nabla u) = 0$ is the subject of this note. A new strategy, based on Clifford algebras and a higher dimensional analogue of the Beltrami equation, is here proposed. This represents a possible first step for a proof of uniqueness for the Calderón problem in three and higher dimensions in the $L^\infty$ case.
Citation: |
[1] |
G. Alessandrini, Stable determination of conductivity by boundary measurements, Applicable Analysis, 27 (1988), 153-172.
doi: 10.1080/00036818808839730.![]() ![]() ![]() |
[2] |
G. Alessandrini and R. Magnanini, Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions, SIAM Journal on Mathematical Analysis, 25 (1994), 1259-1268.
doi: 10.1137/S0036141093249080.![]() ![]() ![]() |
[3] |
K. Astala, M. Lassas and L. Päivärinta, The borderlines of the invisibility and visibility for Calderón's inverse problem, Anal. PDE, 9 (2016), 43-98.
doi: 10.2140/apde.2016.9.43.![]() ![]() ![]() |
[4] |
K. Astala and L. Päivärinta, Calderón's inverse conductivity problem in the plane, Annals of Mathematics, 163 (2006), 265-299.
doi: 10.4007/annals.2006.163.265.![]() ![]() ![]() |
[5] |
M. I. Belishev and A. F. Vakulenko, On algebras of harmonic quaternion fields in $\mathbb{R}^3$, arXiv preprint, arXiv: 1710.00577, 2017.
![]() |
[6] |
M. I. Belishev, On algebras of three-dimensional quaternion harmonic fields, Journal of Mathematical Sciences, 226 (2017), 701-710.
doi: 10.1007/s10958-017-3559-1.![]() ![]() ![]() |
[7] |
M. I. Belishev, Some remarks on the impedance tomography problem for 3d-manifolds, Cubo, 7 (2005), 43-55.
![]() ![]() |
[8] |
L. Bers and L. Nirenberg, On a representation theorem for linear elliptic systems with discontinuous coefficients and its applications, Convegno Internazionale sulle Equazioni Lineari alle Derivate Parziali, Trieste, 1954.
![]() |
[9] |
F. Brackx, R. Delanghe and F. Sommen, Clifford Analysis, vol. 76, Pitman Books Limited, 1982.
![]() ![]() |
[10] |
R. M. Brown and R. H. Torres, Uniqueness in the inverse conductivity problem for conductivities with 3/2 derivatives in Lp, p > 2n, The Journal of Fourier Analysis and Applications, 9 (2003), 563-574.
doi: 10.1007/s00041-003-0902-3.![]() ![]() ![]() |
[11] |
A. Calderón, On an inverse boundary value problem,, Seminar on Numerical Analysis and its Applications to Continuum Physics (Soc. Brasil. Mat., Rio de Janeiro), (1980), 65-73.
![]() ![]() |
[12] |
P. Caro and K. M. Rogers, Global uniqueness for the Calderón problem with Lipschitz conductivities, in Forum of Mathematics, Pi, 4 (2016), e2, 28pp.
doi: 10.1017/fmp.2015.9.![]() ![]() ![]() |
[13] |
B. B. Delgado and R. M. Porter, General solution of the inhomogeneous div-curl system and consequences, Advances in Applied Clifford Algebras, 27 (2017), 3015-3037.
doi: 10.1007/s00006-017-0805-z.![]() ![]() ![]() |
[14] |
B. B. Delgado and R. M. Porter, Hilbert transform for the three-dimensional vekua equation, arXiv preprint, arXiv: 1803.03293, 2018.
![]() |
[15] |
L. D. Faddeev, Increasing solutions of the Schrödinger equation, Soviet Physics Doklady, 10 (1966), 1033-1035.
![]() |
[16] |
K. Gürlebeck and W. Sprößig, Quaternionic analysis and elliptic boundary value problems, Int. Series of Numerical Mathematics, 89.
![]() |
[17] |
B. Haberman, Uniqueness in Calderón problem for conductivities with unbounded gradient, Communications in Mathematical Physics, 340 (2015), 639-659.
doi: 10.1007/s00220-015-2460-3.![]() ![]() ![]() |
[18] |
C. Li, A. G. McIntosh and T. Qian, Clifford algebras, Fourier transforms and singular convolution operators on Lipschitz surfaces, Revista Matematica Iberoamericana, 10 (1994), 665-721.
doi: 10.4171/RMI/164.![]() ![]() ![]() |
[19] |
A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Annals of Mathematics, 143 (1996), 71-96.
doi: 10.2307/2118653.![]() ![]() ![]() |
[20] |
J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Annals of Mathematics, 125 (1987), 153-169.
doi: 10.2307/1971291.![]() ![]() ![]() |
[21] |
V. I. Vekua, Generalized Analytic Functions, Pergamon Press London, 1962.
![]() ![]() |