• Previous Article
    A connection between uniqueness of minimizers in Tikhonov-type regularization and Morozov-like discrepancy principles
  • IPI Home
  • This Issue
  • Next Article
    A reference ball based iterative algorithm for imaging acoustic obstacle from phaseless far-field data
February  2019, 13(1): 197-210. doi: 10.3934/ipi.2019011

Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrödinger operators

1. 

Department of Mathematics, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China

2. 

Department of Mathematics and Statistics, University of Jyväskylä, Jyväskylä, Finland

3. 

Department of Mathematics, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China

Received  May 2018 Revised  October 2018 Published  December 2018

Let $A∈{\rm{Sym}}(n× n)$ be an elliptic 2-tensor. Consider the anisotropic fractional Schrödinger operator $\mathscr{L}_A^s+q$, where $\mathscr{L}_A^s: = (-\nabla·(A(x)\nabla))^s$, $s∈ (0, 1)$ and $q∈ L^∞$. We are concerned with the simultaneous recovery of $q$ and possibly embedded soft or hard obstacles inside $q$ by the exterior Dirichlet-to-Neumann (DtN) map outside a bounded domain $Ω$ associated with $\mathscr{L}_A^s+q$. It is shown that a single measurement can uniquely determine the embedded obstacle, independent of the surrounding potential $q$. If multiple measurements are allowed, then the surrounding potential $q$ can also be uniquely recovered. These are surprising findings since in the local case, namely $s = 1$, both the obstacle recovery by a single measurement and the simultaneous recovery of the surrounding potential by multiple measurements are long-standing problems and still remain open in the literature. Our argument for the nonlocal inverse problem is mainly based on the strong uniqueness property and Runge approximation property for anisotropic fractional Schrödinger operators.

Citation: Xinlin Cao, Yi-Hsuan Lin, Hongyu Liu. Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrödinger operators. Inverse Problems and Imaging, 2019, 13 (1) : 197-210. doi: 10.3934/ipi.2019011
References:
[1]

G. Alessandrini and L. Rondi, Determining a sound-soft polyhedral scatterer by a single farfield measurement, Proc. Amer. Math. Soc., 133 (2005), 1685–1691. Corrigendum: Preprtint arXiv math.AP/0601406, 2006. doi: 10.1090/S0002-9939-05-07810-X.

[2]

L. A. Caffarelli and P. R. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 33 (2016), 767-807.  doi: 10.1016/j.anihpc.2015.01.004.

[3]

J. Cheng and M. Yamamoto, Uniqueness in an inverse scattering problem within non-trapping polygonal obstacles with at most two incoming waves, Inverse Problems, 19 (2003), 1361-1384.  doi: 10.1088/0266-5611/19/6/008.

[4]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 2nd Edition, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-03537-5.

[5]

T. GhoshY.-H. Lin and J. Xiao, The Calderón problem for variable coefficients nonlocal elliptic operators, Communications in Partial Differential Equations, 42 (2017), 1923-1961.  doi: 10.1080/03605302.2017.1390681.

[6]

T. Ghosh, M. Salo and G. Uhlmann, The Calderón problem for the fractional Schrödinger equation, arXiv: 1609.09248.

[7]

B. Harrach and Y.-H. Lin, Monotonicity-based inversion of the fractional Schrödinger equation, arXiv: 1711.05641.

[8]

N. HondaG. Nakamura and M. Sini, Analytic extension and reconstruction of obstacles from few measurements for elliptic second order operators, Math. Ann., 355 (2013), 401-427.  doi: 10.1007/s00208-012-0786-0.

[9]

O. ImanuvilovG. Uhlmann and M. Yamamoto, The Calderón problem with partial data in two dimensions, J. Am. Math. Soc., 23 (2010), 655-691.  doi: 10.1090/S0894-0347-10-00656-9.

[10]

V. Isakov, Inverse Problems for Partial Differential Equations, 2nd edition, Applied Mathematical Sciences, 127, Springer-Verlag, New York, 2006.

[11]

C. KenigJ. Sjöstrand and G. Uhlmann, The Calderón problem with partial data, Ann. of Math.(2), 165 (2007), 567-591.  doi: 10.4007/annals.2007.165.567.

[12]

A. Kirsch X. Liu, Direct and inverse acoustic scattering by a mixed-type scatterer, Inverse Problems, 29 (2013), 065005, 19pp. doi: 10.1088/0266-5611/29/6/065005.

[13]

A. Kirsch and L. Päivärinta, On recovering obstacles inside inhomogeneities, Math. Meth. Appl. Sci., 21 (1998), 619-651.  doi: 10.1002/(SICI)1099-1476(19980510)21:7<619::AID-MMA940>3.0.CO;2-P.

[14]

R.-Y. Lai and Y.-H. Lin, Global uniqueness for the semilinear fractional Schrödinger equation, arXiv: 1710.07404.

[15]

H. Liu and X. Liu, Recovery of an embedded obstacle and its surrounding medium from formally determined scattering data, Inverse Problems, 33 (2017), 065001, 20pp. doi: 10.1088/1361-6420/aa6770.

[16]

H. LiuM. PetriniL. Rondi and J. Xiao, Stable determination of sound-hard polyhedral scatterers by a minimal number of scattering measurements, J. Differential Equations, 262 (2017), 1631-1670.  doi: 10.1016/j.jde.2016.10.021.

[17]

H. LiuH. Zhao and C. Zou, Determining scattering support of anisotropic acoustic mediums and obstacles, Commun. Math. Sci., 13 (2015), 987-1000.  doi: 10.4310/CMS.2015.v13.n4.a7.

[18]

X. Liu and B. Zhang, Direct and inverse obstacle scattering problems in a piecewise homogeneous medium, SIAM J. Appl. Math., 70 (2010), 3105-3120.  doi: 10.1137/090777578.

[19]

H. Liu and J. Zou, Uniqueness in an inverse acoustic scatterer scattering problem for both sound-hard and sound-soft polyhedral scatterers, Inverse Problems, 22 (2006), 515-524.  doi: 10.1088/0266-5611/22/2/008.

[20]

H. Liu and J. Zou, On unique determination of partially coated polyhedral scatterers with far-field measurements, Inverse Problems, 23 (2007), 297-308.  doi: 10.1088/0266-5611/23/1/016.

[21]

H. Liu and J. Zou, On uniqueness in inverse acoustic and electromagnetic obstacle scattering problems, J. Phys.: Conf. Ser., 124 012006.

[22]

W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, 2000.

[23]

E. D. NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bulletin des Sciences Mathématiques, 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.

[24]

S. O'Dell, Inverse scattering for the Laplace-Beltrami operator with complex electromagnetic potentials and embedded obstacles, Inverse Problems, 22 (2006), 1579-1603.  doi: 10.1088/0266-5611/22/5/005.

[25]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Volume 44, Springer Science & Business Media, 2012.

[26]

L. Rondi, Unique determination of non-smooth sound-soft scatterers by finitely many far-field measurements, Indiana Univ. Math. J., 52 (2003), 1631-1662.  doi: 10.1512/iumj.2003.52.2394.

[27]

L. Rondi, Stable determination of sound-soft polyhedral scatterers by a single measurement, Indiana Univ. Math. J., 57 (2008), 1377-1408.  doi: 10.1512/iumj.2008.57.3217.

[28]

W. Rudin, Functional Analysis, New York-Düsseldorf-Johannesburg, 1973.

[29]

A. Rüland and M. Salo, Exponential instability in the fractional Calderón problem, Inverse Problems, 34 (2018), 045003, 21 pp, arXiv: 1711.04799. doi: 10.1088/1361-6420/aaac5a.

[30]

A. Rüland and M. Salo, The fractional Calderón problem: low regularity and stability, arXiv: 1708.06294.

[31]

P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Communications in Partial Differential Equations, 35 (2010), 2092-2122.  doi: 10.1080/03605301003735680.

show all references

References:
[1]

G. Alessandrini and L. Rondi, Determining a sound-soft polyhedral scatterer by a single farfield measurement, Proc. Amer. Math. Soc., 133 (2005), 1685–1691. Corrigendum: Preprtint arXiv math.AP/0601406, 2006. doi: 10.1090/S0002-9939-05-07810-X.

[2]

L. A. Caffarelli and P. R. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 33 (2016), 767-807.  doi: 10.1016/j.anihpc.2015.01.004.

[3]

J. Cheng and M. Yamamoto, Uniqueness in an inverse scattering problem within non-trapping polygonal obstacles with at most two incoming waves, Inverse Problems, 19 (2003), 1361-1384.  doi: 10.1088/0266-5611/19/6/008.

[4]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 2nd Edition, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-03537-5.

[5]

T. GhoshY.-H. Lin and J. Xiao, The Calderón problem for variable coefficients nonlocal elliptic operators, Communications in Partial Differential Equations, 42 (2017), 1923-1961.  doi: 10.1080/03605302.2017.1390681.

[6]

T. Ghosh, M. Salo and G. Uhlmann, The Calderón problem for the fractional Schrödinger equation, arXiv: 1609.09248.

[7]

B. Harrach and Y.-H. Lin, Monotonicity-based inversion of the fractional Schrödinger equation, arXiv: 1711.05641.

[8]

N. HondaG. Nakamura and M. Sini, Analytic extension and reconstruction of obstacles from few measurements for elliptic second order operators, Math. Ann., 355 (2013), 401-427.  doi: 10.1007/s00208-012-0786-0.

[9]

O. ImanuvilovG. Uhlmann and M. Yamamoto, The Calderón problem with partial data in two dimensions, J. Am. Math. Soc., 23 (2010), 655-691.  doi: 10.1090/S0894-0347-10-00656-9.

[10]

V. Isakov, Inverse Problems for Partial Differential Equations, 2nd edition, Applied Mathematical Sciences, 127, Springer-Verlag, New York, 2006.

[11]

C. KenigJ. Sjöstrand and G. Uhlmann, The Calderón problem with partial data, Ann. of Math.(2), 165 (2007), 567-591.  doi: 10.4007/annals.2007.165.567.

[12]

A. Kirsch X. Liu, Direct and inverse acoustic scattering by a mixed-type scatterer, Inverse Problems, 29 (2013), 065005, 19pp. doi: 10.1088/0266-5611/29/6/065005.

[13]

A. Kirsch and L. Päivärinta, On recovering obstacles inside inhomogeneities, Math. Meth. Appl. Sci., 21 (1998), 619-651.  doi: 10.1002/(SICI)1099-1476(19980510)21:7<619::AID-MMA940>3.0.CO;2-P.

[14]

R.-Y. Lai and Y.-H. Lin, Global uniqueness for the semilinear fractional Schrödinger equation, arXiv: 1710.07404.

[15]

H. Liu and X. Liu, Recovery of an embedded obstacle and its surrounding medium from formally determined scattering data, Inverse Problems, 33 (2017), 065001, 20pp. doi: 10.1088/1361-6420/aa6770.

[16]

H. LiuM. PetriniL. Rondi and J. Xiao, Stable determination of sound-hard polyhedral scatterers by a minimal number of scattering measurements, J. Differential Equations, 262 (2017), 1631-1670.  doi: 10.1016/j.jde.2016.10.021.

[17]

H. LiuH. Zhao and C. Zou, Determining scattering support of anisotropic acoustic mediums and obstacles, Commun. Math. Sci., 13 (2015), 987-1000.  doi: 10.4310/CMS.2015.v13.n4.a7.

[18]

X. Liu and B. Zhang, Direct and inverse obstacle scattering problems in a piecewise homogeneous medium, SIAM J. Appl. Math., 70 (2010), 3105-3120.  doi: 10.1137/090777578.

[19]

H. Liu and J. Zou, Uniqueness in an inverse acoustic scatterer scattering problem for both sound-hard and sound-soft polyhedral scatterers, Inverse Problems, 22 (2006), 515-524.  doi: 10.1088/0266-5611/22/2/008.

[20]

H. Liu and J. Zou, On unique determination of partially coated polyhedral scatterers with far-field measurements, Inverse Problems, 23 (2007), 297-308.  doi: 10.1088/0266-5611/23/1/016.

[21]

H. Liu and J. Zou, On uniqueness in inverse acoustic and electromagnetic obstacle scattering problems, J. Phys.: Conf. Ser., 124 012006.

[22]

W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, 2000.

[23]

E. D. NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bulletin des Sciences Mathématiques, 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.

[24]

S. O'Dell, Inverse scattering for the Laplace-Beltrami operator with complex electromagnetic potentials and embedded obstacles, Inverse Problems, 22 (2006), 1579-1603.  doi: 10.1088/0266-5611/22/5/005.

[25]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Volume 44, Springer Science & Business Media, 2012.

[26]

L. Rondi, Unique determination of non-smooth sound-soft scatterers by finitely many far-field measurements, Indiana Univ. Math. J., 52 (2003), 1631-1662.  doi: 10.1512/iumj.2003.52.2394.

[27]

L. Rondi, Stable determination of sound-soft polyhedral scatterers by a single measurement, Indiana Univ. Math. J., 57 (2008), 1377-1408.  doi: 10.1512/iumj.2008.57.3217.

[28]

W. Rudin, Functional Analysis, New York-Düsseldorf-Johannesburg, 1973.

[29]

A. Rüland and M. Salo, Exponential instability in the fractional Calderón problem, Inverse Problems, 34 (2018), 045003, 21 pp, arXiv: 1711.04799. doi: 10.1088/1361-6420/aaac5a.

[30]

A. Rüland and M. Salo, The fractional Calderón problem: low regularity and stability, arXiv: 1708.06294.

[31]

P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Communications in Partial Differential Equations, 35 (2010), 2092-2122.  doi: 10.1080/03605301003735680.

[1]

Nguyen Dinh Cong. Semigroup property of fractional differential operators and its applications. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022064

[2]

Bo Su. Doubling property of elliptic equations. Communications on Pure and Applied Analysis, 2008, 7 (1) : 143-147. doi: 10.3934/cpaa.2008.7.143

[3]

Sasikarn Yeepo, Wicharn Lewkeeratiyutkul, Sujin Khomrutai, Armin Schikorra. On the Calderon-Zygmund property of Riesz-transform type operators arising in nonlocal equations. Communications on Pure and Applied Analysis, 2021, 20 (9) : 2915-2939. doi: 10.3934/cpaa.2021071

[4]

Mikhail Krastanov, Michael Malisoff, Peter Wolenski. On the strong invariance property for non-Lipschitz dynamics. Communications on Pure and Applied Analysis, 2006, 5 (1) : 107-124. doi: 10.3934/cpaa.2006.5.107

[5]

Giovanni Covi, Keijo Mönkkönen, Jesse Railo. Unique continuation property and Poincaré inequality for higher order fractional Laplacians with applications in inverse problems. Inverse Problems and Imaging, 2021, 15 (4) : 641-681. doi: 10.3934/ipi.2021009

[6]

Ting Chen, Fusheng Lv, Wenchang Sun. Uniform Approximation Property of Frames with Applications to Erasure Recovery. Communications on Pure and Applied Analysis, 2022, 21 (3) : 1093-1107. doi: 10.3934/cpaa.2022011

[7]

Jaan Janno, Kairi Kasemets. Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation. Inverse Problems and Imaging, 2017, 11 (1) : 125-149. doi: 10.3934/ipi.2017007

[8]

Shingo Takeuchi. The basis property of generalized Jacobian elliptic functions. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2675-2692. doi: 10.3934/cpaa.2014.13.2675

[9]

Zdzisław Brzeźniak, Paul André Razafimandimby. Irreducibility and strong Feller property for stochastic evolution equations in Banach spaces. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1051-1077. doi: 10.3934/dcdsb.2016.21.1051

[10]

Taige Wang, Dihong Xu. A quantitative strong unique continuation property of a diffusive SIS model. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1599-1614. doi: 10.3934/dcdss.2022024

[11]

Muriel Boulakia. Quantification of the unique continuation property for the nonstationary Stokes problem. Mathematical Control and Related Fields, 2016, 6 (1) : 27-52. doi: 10.3934/mcrf.2016.6.27

[12]

Mei Yu, Xia Zhang, Binlin Zhang. Property of solutions for elliptic equation involving the higher-order fractional Laplacian in $ \mathbb{R}^n_+ $. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3597-3612. doi: 10.3934/cpaa.2020157

[13]

Masahiro Yamamoto. Uniqueness for inverse problem of determining fractional orders for time-fractional advection-diffusion equations. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022017

[14]

Xiaohua Jing, Masahiro Yamamoto. Simultaneous uniqueness for multiple parameters identification in a fractional diffusion-wave equation. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022019

[15]

Michael Röckner, Jiyong Shin, Gerald Trutnau. Non-symmetric distorted Brownian motion: Strong solutions, strong Feller property and non-explosion results. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3219-3237. doi: 10.3934/dcdsb.2016095

[16]

Shoichi Hasegawa. Stability and separation property of radial solutions to semilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4127-4136. doi: 10.3934/dcds.2019166

[17]

Jian Zhang, Wen Zhang. Existence and decay property of ground state solutions for Hamiltonian elliptic system. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2433-2455. doi: 10.3934/cpaa.2019110

[18]

Agnid Banerjee. A note on the unique continuation property for fully nonlinear elliptic equations. Communications on Pure and Applied Analysis, 2015, 14 (2) : 623-626. doi: 10.3934/cpaa.2015.14.623

[19]

Alfonso C. Casal, Jesús Ildefonso Díaz, José M. Vegas. Finite extinction time property for a delayed linear problem on a manifold without boundary. Conference Publications, 2011, 2011 (Special) : 265-271. doi: 10.3934/proc.2011.2011.265

[20]

Huajun Tang, T. C. Edwin Cheng, Chi To Ng. A note on the subtree ordered median problem in networks based on nestedness property. Journal of Industrial and Management Optimization, 2012, 8 (1) : 41-49. doi: 10.3934/jimo.2012.8.41

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (261)
  • HTML views (189)
  • Cited by (11)

Other articles
by authors

[Back to Top]