\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Microlocal analysis of a spindle transform

The first author is supported by Engineering and Physical Sciences Research Council and Rapiscan systems, CASE studentship
The second author is supported by Engineering and Physical Sciences Research Council (EP/M016773/1).
Abstract Full Text(HTML) Figure(13) Related Papers Cited by
  • An analysis of the stability of the spindle transform, introduced in [16], is presented. We do this via a microlocal approach and show that the normal operator for the spindle transform is a type of paired Lagrangian operator with "blowdown–blowdown" singularities analogous to that of a limited data synthetic aperture radar (SAR) problem studied by Felea et. al. [4]. We find that the normal operator for the spindle transform belongs to a class of distibutions $ I^{p, l}(\Delta, \Lambda)+I^{p, l}(\widetilde{\Delta}, \Lambda) $ studied by Felea and Marhuenda in [4,10], where $ \widetilde{\Delta} $ is reflection through the origin, and $ \Lambda $ is associated to a rotation artefact. Later, we derive a filter to reduce the strength of the image artefact and show that it is of convolution type. We also provide simulated reconstructions to show the artefacts produced by $ \Lambda $ and show how the filter we derived can be applied to reduce the strength of the artefact.

    Mathematics Subject Classification: Primary: 35A27; Secondary: 35R30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  A spindle torus with axis of rotation $ \theta $, tube centre offset $ r $ and tube radius $ \sqrt{1+r^2} $. The distance between the origin and either of the points where the torus self intersects is 1

    Figure 2.  Small bead

    Figure 3.  Bead reconstruction by backprojection

    Figure 4.  Bead reconstruction by filtered backprojection, with $ L = 25 $ components

    Figure 5.  Bead reconstruction by backprojection, truncating the data to $ L = 25 $ components

    Figure 6.  Layered spherical shell segment phantom, centred at the origin

    Figure 7.  Layered plane phantom

    Figure 8.  Layered spherical shell segment CGLS reconstruction

    Figure 9.  Layered spherical shell segment CGLS reconstruction, with $ Q^{\frac{1}{2}} $ used as a pre–conditioner and no added Tikhonov regularisation

    Figure 10.  Layered plane reconstruction by CGLS

    Figure 11.  Layered plane reconstruction by Landweber iteration

    Figure 12.  Spherical shell reconstruction by Landweber iteration

    Figure 13.  Spherical shell reconstruction by Landweber iteration, with $ Q^{\frac{1}{2}} $ used as a pre–conditioner

  • [1] J. R. Driscoll and D. M. Healy, Computing Fourier transforms and convolutions on the 2-sphere, Advances in Applied Mathematics, 15 (1994), 202-250.  doi: 10.1006/aama.1994.1008.
    [2] J. J. Duistermaat, Fourier Integral Operators, volume 130. Springer Science & Business Media, 1996.
    [3] R. Felea, Composition of Fourier integral operators with fold and blowdown singularities, Communications in Partial Differential Equations, 30 (2005), 1717-1740.  doi: 10.1080/03605300500299968.
    [4] R. FeleaR. Gaburro and C. J. Nolan, Microlocal analysis of SAR imaging of a dynamic reflectivity function, SIAM Journal on Mathematical Analysis, 45 (2013), 2767-2789.  doi: 10.1137/120873571.
    [5] A. Greenleaf and G. Uhlmann, Estimates for singular Radon transforms and pseudodifferential operators with singular symbols, Journal of Functional Analysis, 89 (1990), 202-232.  doi: 10.1016/0022-1236(90)90011-9.
    [6] V. Guillemin and G. Uhlmann, et al., Oscillatory integrals with singular symbols, Duke Math. J, 48 (1981), 251-267.  doi: 10.1215/S0012-7094-81-04814-6.
    [7] L. Hörmander, The Analysis of Linear Partial Differential Operators IV: Fourier Integral Operators. Corrected reprint of the 1985 original, Springer, 1994.
    [8] L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution theory and Fourier analysis. Reprint of the second (1990) edition, Springer, Berlin, 2003. doi: 10.1007/978-3-642-61497-2.
    [9] L. Hörmander, The Analysis of Linear Partial Differential Operators III, Springer, 2007. doi: 10.1007/978-3-540-49938-1.
    [10] F. Marhuenda, Microlocal analysis of some isospectral deformations, Transactions of the American Mathematical Society, 343 (1994), 245-275.  doi: 10.1090/S0002-9947-1994-1181185-0.
    [11] F. Natterer, The Mathematics of Computerized Tomography, SIAM, 2001. doi: 10.1137/1.9780898719284.
    [12] M. K. Nguyen and T. T. Truong, Inversion of a new circular-arc radon transform for Compton scattering tomography, Inverse Problems, 26 (2010), 099802, 1 p. doi: 10.1088/0266-5611/26/9/099802.
    [13] S. J. Norton, Compton scattering tomography, Journal of Applied Physics, 76 (1994), 2007-2015.  doi: 10.1063/1.357668.
    [14] V. P. Palamodov, An analytic reconstruction for the Compton scattering tomography in a plane, Inverse Problems, 27 (2011), 125004, 8pp. doi: 10.1088/0266-5611/27/12/125004.
    [15] R. T. Seeley, Spherical harmonics, The American Mathematical Monthly, 73 (1966), 115-121.  doi: 10.1080/00029890.1966.11970927.
    [16] J. Webber and W. Lionheart, Three dimensional Compton scattering tomography, Inverse Problems, 34 (2018), arXiv: 1704.03378. doi: 10.1088/1361-6420/aac51e.
  • 加载中

Figures(13)

SHARE

Article Metrics

HTML views(570) PDF downloads(299) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return