[1]
|
E. Bae, J. Shi and X.-C. Tai, Graph cuts for curvature based image denoising, IEEE Transactions on Image Processing, 20 (2011), 1199-1210.
doi: 10.1109/TIP.2010.2090533.
|
[2]
|
M. Burger, J. Modersitzki and L. Ruthotto, A hyperelastic regularization energy for image registration, SIAM Journal on Scientific Computing, 35 (2013), 132-148.
doi: 10.1137/110835955.
|
[3]
|
Y. M. Chen, J. L. Shi, M. Rao and J. S. Lee, Deformable multi-modal image registration by maximizing renyi's statistical dependence measure, Inverse Problems and Imaging, 9 (2015), 79-103.
doi: 10.3934/ipi.2015.9.79.
|
[4]
|
N. Chumchob, Vectorial total variation-based regularization for variational image registration, IEEE Transactions on Image Processing, 22 (2013), 4551-4559.
doi: 10.1109/TIP.2013.2274749.
|
[5]
|
N. Chumchob and K. Chen, Improved variational image registration model and a fast algorithm for its numerical approximation, Numerical Methods for Partial Differential Equations, 28 (2012), 1966-1995.
doi: 10.1002/num.20710.
|
[6]
|
N. Chumchob, K. Chen and C. Brito-Loeza, A fourth-order variational image registration model and its fast multigrid algorithm, Multiscale Modeling & Simulation, 9 (2011), 89-128.
doi: 10.1137/100788239.
|
[7]
|
M. Droske and W. Ring, A mumford-shah level-set approach for geometric image registration, SIAM journal on Applied Mathematics, 66 (2006), 2127-2148.
doi: 10.1137/050630209.
|
[8]
|
J. Feydy, B. Charlier, F. V. Vialard and G. Peyre, Optimal transport for diffeomorphic registration, International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017: Medical Image Computing and Computer Assisted Intervention - MICCAI, (2017), 291-299, https://arXiv.org/abs/1706.05218v1.
doi: 10.1007/978-3-319-66182-7_34.
|
[9]
|
B. Fischer and J. Modersitzki, Fast diffusion registration, Contemp. Math., 313 (2002), 117-129.
doi: 10.1090/conm/313/05372.
|
[10]
|
B. Fischer and J. Modersitzki, Curvature based image registration, Journal of Mathematical Imaging and Vision, 18 (2003), 81-85.
doi: 10.1023/A:1021897212261.
|
[11]
|
B. Fischer and J. Modersitzki, Ill-posed medicine - an introduction to image registration, Inverse Problems, 24 (2008), 034008, 16 pp.
doi: 10.1088/0266-5611/24/3/034008.
|
[12]
|
E. Haber and J. Modersitzki, Numerical methods for volume preserving image registration, Inverse Problems, 20 (2004), 1621-1638.
doi: 10.1088/0266-5611/20/5/018.
|
[13]
|
E. Haber and J. Modersitzki, Image registration with guaranteed displacement regularity, International Journal of Computer Vision, 71 (2007), 361-372.
doi: 10.1007/s11263-006-8984-4.
|
[14]
|
S. Henn, A multigrid method for a fourth-order diffusion equation with application to image processing, SIAM Journal on Scientific Computing, 27 (2005), 831-849.
doi: 10.1137/040611124.
|
[15]
|
E. Hodneland, A. Lundervold, J. Rørvik and A. Z. Munthe-Kaas, Normalized gradient fields for nonlinear motion correction of dce-mri time series, Computerized Medical Imaging and Graphics, 38 (2014), 202-210.
|
[16]
|
W. Hu, Y. Xie, L. Li and W. Zhang, A total variation based nonrigid image registration by combining parametric and non-parametric transformation models, Neurocomputing, 144 (2014), 222-237.
doi: 10.1016/j.neucom.2014.05.031.
|
[17]
|
M. Ibrahim, K. Chen and C. Brito-Loeza, A novel variational model for image registration using gaussian curvature, Geometry, Imaging and Computing, 1 (2014), 417-446.
doi: 10.4310/GIC.2014.v1.n4.a2.
|
[18]
|
L. König and J. Rühaak, A fast and accurate parallel algorithm for non-linear image registration using normalized gradient fields, in Biomedical Imaging (ISBI), 2014 IEEE 11th International Symposium on, IEEE, 2014,580-583.
|
[19]
|
D. Loeckx, P. Slagmolen, F. Maes, D. Vandermeulen and P. Suetens, Nonrigid image registration using conditional mutual information, IEEE Transactions on Medical Imaging, 29 (2010), 19-29.
|
[20]
|
F. Maes, A. Collignon, D. Vandermeulen, G. Marchal and P. Suetens, Multimodality image registration by maximization of mutual information, IEEE Transactions on Tedical Imaging, 16 (1997), 187-198.
doi: 10.1109/42.563664.
|
[21]
|
A. Mang and G. Biros, An inexact Newton-Krylov algorithm for constrained diffeomorphic image registration, SIAM Journal on Imaging Sciences, 8 (2015), 1030-1069.
doi: 10.1137/140984002.
|
[22]
|
A. Mang and G. Biros, Constrained $h^1$-regularization schemes for diffeomorphic image registration, SIAM Journal on Imaging Sciences, 9 (2016), 1154-1194.
doi: 10.1137/15M1010919.
|
[23]
|
J. Modersitzki, FAIR: Flexible Algorithms for Image Registration, SIAM, 2009.
doi: 10.1137/1.9780898718843.
|
[24]
|
F. P. Oliveira and J. M. R. Tavares, Medical image registration: A review, Computer Methods in Biomechanics and Biomedical Engineering, 17 (2014), 73-93.
doi: 10.1080/10255842.2012.670855.
|
[25]
|
K. Papafitsoros, C. B. Schoenlieb and B. Sengul, Combined first and second order total variation inpainting using split bregman, Image Processing On Line, 3 (2013), 112-136.
doi: 10.5201/ipol.2013.40.
|
[26]
|
J. P. Pluim, J. A. Maintz and M. A. Viergever, Mutual-information-based registration of medical images: A survey, IEEE Transactions on Medical Imaging, 22 (2003), 986-1004.
doi: 10.1109/TMI.2003.815867.
|
[27]
|
C. Pöschl, J. Modersitzki and O. Scherzer, A variational setting for volume constrained image registration, Inverse Problems and Imaging, 4 (2010), 505-522.
doi: 10.3934/ipi.2010.4.505.
|
[28]
|
T. Rohlfing, C. R. Maurer, D. A. Bluemke and M. A. Jacobs, Volume-preserving nonrigid registration of mr breast images using free-form deformation with an incompressibility constraint, IEEE transactions on medical imaging, 22 (2003), 730-741.
doi: 10.1109/TMI.2003.814791.
|
[29]
|
G. Roland and L. T. Patrick, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, SIAM, 1989.
doi: 10.1137/1.9781611970838.
|
[30]
|
J. Rühaak, L. König, M. Hallmann, N. Papenberg, S. Heldmann, H. Schumacher and B. Fischer, A fully parallel algorithm for multimodal image registration using normalized gradient fields, in Biomedical Imaging (ISBI), 2013 IEEE 10th International Symposium on, IEEE, 2013,572-575.
|
[31]
|
A. Sotiras, C. Davatzikos and N. Paragios, Deformable medical image registration: A survey, IEEE Transactions on Medical Imaging, 32 (2013), 1153-1190.
doi: 10.1109/TMI.2013.2265603.
|
[32]
|
X.-C. Tai, J. Hahn and G. J. Chung, A fast algorithm for Euler's elastica model using augmented lagrangian method, SIAM Journal on Imaging Sciences, 4 (2011), 313-344.
doi: 10.1137/100803730.
|
[33]
|
P. Viola and W. M. Wells Ⅲ, Alignment by maximization of mutual information, International Journal of Computer Vision, 24 (1997), 137-154.
|
[34]
|
C. Wu and X. C. Tai, Augmented lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models, SIAM Journal on Imaging Sciences, 3 (2010), 300-339.
doi: 10.1137/090767558.
|
[35]
|
C. Wu, J. Zhang and X.-C. Tai, Augmented Lagrangian method for total variation restoration with non-quadratic fidelity, Inverse Problems and Imaging, 5 (2011), 237-261.
doi: 10.3934/ipi.2011.5.237.
|
[36]
|
C. Xing and P. Qiu, Intensity-based image registration by nonparametric local smoothing, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33 (2011), 2081-2092.
|
[37]
|
M. Yashtini and S. H. Kang, A fast relaxed normal two split method and an effective weighted TV approach for E1uler's elastica image inpainting, SIAM Journal on Imaging Sciences, 9 (2016), 1552-1581.
doi: 10.1137/16M1063757.
|
[38]
|
W. Yilun, Y. Junfeng, Y. Wotao and Z. Yin, A new alternating minimization algorithm for total variation image reconstruction, SIAM Journal on Imaging Sciences, 1 (2008), 248-272.
doi: 10.1137/080724265.
|
[39]
|
J. Zhang and K. Chen, Variational image registration by a total fractional-order variation model, Journal of Computational Physics, 293 (2015), 442-461.
doi: 10.1016/j.jcp.2015.02.021.
|
[40]
|
J. Zhang, K. Chen and B. Yu, An improved discontinuity-preserving image registration model and its fast algorithm, Applied Mathematical Modelling, 40 (2016), 10740-10759.
doi: 10.1016/j.apm.2016.08.009.
|
[41]
|
J. Zhang, K. Chen and B. Yu, A novel high-order functional based image registration model with inequality constraint, Mathematics with Applications, 72 (2016), 2887-2899.
doi: 10.1016/j.camwa.2016.10.018.
|
[42]
|
X. Zhou, Weak lower semicontinuity of a functional with any order, Journal of Mathematical Analysis and Applications, 221 (1998), 217-237.
doi: 10.1006/jmaa.1997.5881.
|
[43]
|
W. ZHU, X.-C. TAI and T. CHAN, Augmented lagrangian method for a mean curvature based image denoising model, Imaging, 7 (2013), 1409-1432.
doi: 10.3934/ipi.2013.7.1409.
|
[44]
|
W. Zhu, X.-C. Tai and T. Chan, Image segmentation using euler's elastica as the regularization, Journal of Scientific Computing, 57 (2013), 414-438.
doi: 10.1007/s10915-013-9710-3.
|