June  2019, 13(3): 635-652. doi: 10.3934/ipi.2019029

Inverse random source problem for biharmonic equation in two dimensions

School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China

* Corresponding author: xxu@zju.edu.cn

Received  May 2018 Revised  December 2018 Published  March 2019

Fund Project: The authors are partly supported by NSFC grant 11471284, 11421110002, 11621101, 91630309 and the Fundamental Research Funds for the Central Universities.

The establishment of relevant model and solving an inverse random source problem are one of the main tools for analyzing mechanical properties of elastic materials. In this paper, we study an inverse random source problem for biharmonic equation in two dimension. Under some regularity assumptions on the structure of random source, the well-posedness of the forward problem is established. Moreover, based on the explicit solution of the forward problem, we can solve the corresponding inverse random source problem via two transformed integral equations. Numerical examples are presented to illustrate the validity and effectiveness of the proposed inversion method.

Citation: Yuxuan Gong, Xiang Xu. Inverse random source problem for biharmonic equation in two dimensions. Inverse Problems and Imaging, 2019, 13 (3) : 635-652. doi: 10.3934/ipi.2019029
References:
[1]

J. E. AllenD. E. PereaE. R. Hemesath and L. J. Lauhon, Nonuniform nanowire doping profiles revealed by quantitative scanning photocurrent microscopy, Advanced Materials, 21 (2009), 3067-3072.  doi: 10.1002/adma.200803865.

[2]

G. BaoC. Chen and P. Li, Inverse random source scattering problems in several dimensions, SIAM/ASA J. Uncertainty Quantification, 4 (2016), 1263-1287.  doi: 10.1137/16M1067470.

[3]

G. BaoC. Chen and P. Li, Inverse random source scattering for elastic waves, SIAM J. Numer. Anal., 55 (2017), 2616-2643.  doi: 10.1137/16M1088922.

[4]

G. BaoS. N. ChowP. Li and H. Zhou, An inverse random source problem for the helmholtz equation, Math. Comp., 83 (2013), 215-233.  doi: 10.1090/S0025-5718-2013-02730-5.

[5]

G. Bao and X. Xu, An inverse random source problem in quantifying the elastic modulus of nanomaterials, Inverse Problems, 29 (2013), 015006, 16pp. doi: 10.1088/0266-5611/29/1/015006.

[6]

G. Bao and X. Xu, Identification of the material properties in nonuniform nanostructures, Inverse Problems, 31 (2015), 125003, 11pp. doi: 10.1088/0266-5611/31/12/125003.

[7]

X. DengV. R. JosephW. MaiZ. L. WangF. C. Jeff Wu and P. J. Bickel, Statistical approach to quantifying the elastic deformation of nanomaterials, Proc. Natl. Acad. Sci. USA, 106 (2009), 11845-11850.  doi: 10.1073/pnas.0808758106.

[8]

K. L EkinciX. M. H Huang and M. L Roukes, Ultrasensitive nanoelectromechanical mass detection, Appl. Phys. Lett., 84 (2004), 4469-4471.  doi: 10.1063/1.1755417.

[9]

M. Hairer, An introduction to stochastic pdes, Moss, F.; Gielen, S. (ed.), Handbook of Biological Physics, 2009,517–552.

[10]

J. HuX. W. Liu and B. C. Pan, A study of the size-dependent elastic properties of zno nanowires and nanotubes, Nanotechnology, 19 (2008), 285710.  doi: 10.1088/0957-4484/19/28/285710.

[11]

M. Li, C. Chen and P. Li, Inverse random source scattering for the Helmholtz equation in inhomogeneous media, Inverse Problems, 34 (2018), 015003, 19pp. doi: 10.1088/1361-6420/aa99d2.

[12]

P. Li and G. Yuan, Stability on the inverse random source scattering problem for the one-dimensional Helmholtz equation, J. Math. Anal. Appl., 450 (2017), 872-887.  doi: 10.1016/j.jmaa.2017.01.074.

[13]

P. Li and G. Yuan, Increasing stability for the inverse source scattering problem with multi-frequencies, Inverse Problems and Imaging, 11 (2017), 745-759.  doi: 10.3934/ipi.2017035.

[14]

W. Mai and X. Deng, The applications of statistical quantification techniques in nanomechanics and nanoelectronics, Nanotechnology, 21 (2010), 405704.  doi: 10.1088/0957-4484/21/40/405704.

[15]

V. Mlinar, Utilization of inverse approach in the design of materials over nano to macro scale, Annalen Der Physik, 527 (2015), 187-204.  doi: 10.1002/andp.201400190.

[16]

S. Pereverzev and E. Schock, On the adaptive selection of the parameter in regularization of ill-posed problems, SIAM J. Numer. Anal., 43 (2005), 2060-2076.  doi: 10.1137/S0036142903433819.

[17]

P. PoncharalZ. WangD. Ugarte and W. Heer, Electrostatic deflections and electromechanical resonances of carbon nanotubes, Science, 283 (1999), 1513-1516.  doi: 10.1126/science.283.5407.1513.

[18]

M. TreacyT. Ebbesen and J. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature, 381 (1996), 678-680.  doi: 10.1038/381678a0.

[19]

E. W. WongP. E. Sheehan and C. M. Lieber, Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes, Science, 277 (1997), 1971-1975.  doi: 10.1126/science.277.5334.1971.

show all references

References:
[1]

J. E. AllenD. E. PereaE. R. Hemesath and L. J. Lauhon, Nonuniform nanowire doping profiles revealed by quantitative scanning photocurrent microscopy, Advanced Materials, 21 (2009), 3067-3072.  doi: 10.1002/adma.200803865.

[2]

G. BaoC. Chen and P. Li, Inverse random source scattering problems in several dimensions, SIAM/ASA J. Uncertainty Quantification, 4 (2016), 1263-1287.  doi: 10.1137/16M1067470.

[3]

G. BaoC. Chen and P. Li, Inverse random source scattering for elastic waves, SIAM J. Numer. Anal., 55 (2017), 2616-2643.  doi: 10.1137/16M1088922.

[4]

G. BaoS. N. ChowP. Li and H. Zhou, An inverse random source problem for the helmholtz equation, Math. Comp., 83 (2013), 215-233.  doi: 10.1090/S0025-5718-2013-02730-5.

[5]

G. Bao and X. Xu, An inverse random source problem in quantifying the elastic modulus of nanomaterials, Inverse Problems, 29 (2013), 015006, 16pp. doi: 10.1088/0266-5611/29/1/015006.

[6]

G. Bao and X. Xu, Identification of the material properties in nonuniform nanostructures, Inverse Problems, 31 (2015), 125003, 11pp. doi: 10.1088/0266-5611/31/12/125003.

[7]

X. DengV. R. JosephW. MaiZ. L. WangF. C. Jeff Wu and P. J. Bickel, Statistical approach to quantifying the elastic deformation of nanomaterials, Proc. Natl. Acad. Sci. USA, 106 (2009), 11845-11850.  doi: 10.1073/pnas.0808758106.

[8]

K. L EkinciX. M. H Huang and M. L Roukes, Ultrasensitive nanoelectromechanical mass detection, Appl. Phys. Lett., 84 (2004), 4469-4471.  doi: 10.1063/1.1755417.

[9]

M. Hairer, An introduction to stochastic pdes, Moss, F.; Gielen, S. (ed.), Handbook of Biological Physics, 2009,517–552.

[10]

J. HuX. W. Liu and B. C. Pan, A study of the size-dependent elastic properties of zno nanowires and nanotubes, Nanotechnology, 19 (2008), 285710.  doi: 10.1088/0957-4484/19/28/285710.

[11]

M. Li, C. Chen and P. Li, Inverse random source scattering for the Helmholtz equation in inhomogeneous media, Inverse Problems, 34 (2018), 015003, 19pp. doi: 10.1088/1361-6420/aa99d2.

[12]

P. Li and G. Yuan, Stability on the inverse random source scattering problem for the one-dimensional Helmholtz equation, J. Math. Anal. Appl., 450 (2017), 872-887.  doi: 10.1016/j.jmaa.2017.01.074.

[13]

P. Li and G. Yuan, Increasing stability for the inverse source scattering problem with multi-frequencies, Inverse Problems and Imaging, 11 (2017), 745-759.  doi: 10.3934/ipi.2017035.

[14]

W. Mai and X. Deng, The applications of statistical quantification techniques in nanomechanics and nanoelectronics, Nanotechnology, 21 (2010), 405704.  doi: 10.1088/0957-4484/21/40/405704.

[15]

V. Mlinar, Utilization of inverse approach in the design of materials over nano to macro scale, Annalen Der Physik, 527 (2015), 187-204.  doi: 10.1002/andp.201400190.

[16]

S. Pereverzev and E. Schock, On the adaptive selection of the parameter in regularization of ill-posed problems, SIAM J. Numer. Anal., 43 (2005), 2060-2076.  doi: 10.1137/S0036142903433819.

[17]

P. PoncharalZ. WangD. Ugarte and W. Heer, Electrostatic deflections and electromechanical resonances of carbon nanotubes, Science, 283 (1999), 1513-1516.  doi: 10.1126/science.283.5407.1513.

[18]

M. TreacyT. Ebbesen and J. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature, 381 (1996), 678-680.  doi: 10.1038/381678a0.

[19]

E. W. WongP. E. Sheehan and C. M. Lieber, Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes, Science, 277 (1997), 1971-1975.  doi: 10.1126/science.277.5334.1971.

Figure 1.  The model for the two-dimensional biharmonic equation
Figure 2.  The mesh generation under the polar coordination
Figure 3.  The solution to direct problem with random source
Figure 4.  Inverse stiffness D(The exact solution is 0.05)
Figure 5.  The left subfigure is the L-curve for $ g $ and the right subfigure is the inverse mean(The dotted plots are accurate values)
Figure 6.  The left subfigure is the L-curve for $ h^2 $ and the right subfigure is the inverse variance(The dotted plots are accurate values)
Figure 7.  The left subfigure is the L-curve for $ g $ and the right subfigure is the inverse mean(The dotted plots are accurate values)
Figure 8.  The left subfigure is the L-curve for $ h^2 $ and the right subfigure is the inverse variance(The dotted plots are accurate values)
[1]

Shuli Chen, Zewen Wang, Guolin Chen. Cauchy problem of non-homogenous stochastic heat equation and application to inverse random source problem. Inverse Problems and Imaging, 2021, 15 (4) : 619-639. doi: 10.3934/ipi.2021008

[2]

Xiaoli Feng, Meixia Zhao, Peijun Li, Xu Wang. An inverse source problem for the stochastic wave equation. Inverse Problems and Imaging, 2022, 16 (2) : 397-415. doi: 10.3934/ipi.2021055

[3]

Roman Chapko, B. Tomas Johansson. Integral equations for biharmonic data completion. Inverse Problems and Imaging, 2019, 13 (5) : 1095-1111. doi: 10.3934/ipi.2019049

[4]

Kenichi Sakamoto, Masahiro Yamamoto. Inverse source problem with a final overdetermination for a fractional diffusion equation. Mathematical Control and Related Fields, 2011, 1 (4) : 509-518. doi: 10.3934/mcrf.2011.1.509

[5]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[6]

Z. K. Eshkuvatov, M. Kammuji, Bachok M. Taib, N. M. A. Nik Long. Effective approximation method for solving linear Fredholm-Volterra integral equations. Numerical Algebra, Control and Optimization, 2017, 7 (1) : 77-88. doi: 10.3934/naco.2017004

[7]

Guillaume Warnault. Regularity of the extremal solution for a biharmonic problem with general nonlinearity. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1709-1723. doi: 10.3934/cpaa.2009.8.1709

[8]

Tran Ngoc Thach, Nguyen Huy Tuan, Donal O'Regan. Regularized solution for a biharmonic equation with discrete data. Evolution Equations and Control Theory, 2020, 9 (2) : 341-358. doi: 10.3934/eect.2020008

[9]

Roman Chapko, B. Tomas Johansson. On the numerical solution of a Cauchy problem for the Laplace equation via a direct integral equation approach. Inverse Problems and Imaging, 2012, 6 (1) : 25-38. doi: 10.3934/ipi.2012.6.25

[10]

Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations and Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032

[11]

Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems and Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014

[12]

Zhiyuan Li, Yikan Liu, Masahiro Yamamoto. Inverse source problem for a one-dimensional time-fractional diffusion equation and unique continuation for weak solutions. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022027

[13]

El Mustapha Ait Ben Hassi, Salah-Eddine Chorfi, Lahcen Maniar, Omar Oukdach. Lipschitz stability for an inverse source problem in anisotropic parabolic equations with dynamic boundary conditions. Evolution Equations and Control Theory, 2021, 10 (4) : 837-859. doi: 10.3934/eect.2020094

[14]

Teemu Tyni, Valery Serov. Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line. Inverse Problems and Imaging, 2019, 13 (1) : 159-175. doi: 10.3934/ipi.2019009

[15]

Seiyed Hadi Abtahi, Hamidreza Rahimi, Maryam Mosleh. Solving fuzzy volterra-fredholm integral equation by fuzzy artificial neural network. Mathematical Foundations of Computing, 2021, 4 (3) : 209-219. doi: 10.3934/mfc.2021013

[16]

Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems and Imaging, 2007, 1 (1) : 159-179. doi: 10.3934/ipi.2007.1.159

[17]

A. Pedas, G. Vainikko. Smoothing transformation and piecewise polynomial projection methods for weakly singular Fredholm integral equations. Communications on Pure and Applied Analysis, 2006, 5 (2) : 395-413. doi: 10.3934/cpaa.2006.5.395

[18]

Yin Yang, Yunqing Huang. Spectral Jacobi-Galerkin methods and iterated methods for Fredholm integral equations of the second kind with weakly singular kernel. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 685-702. doi: 10.3934/dcdss.2019043

[19]

Nguyen Dinh Cong, Doan Thai Son. On integral separation of bounded linear random differential equations. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 995-1007. doi: 10.3934/dcdss.2016038

[20]

Rui Zhang, Yong-Kui Chang, G. M. N'Guérékata. Weighted pseudo almost automorphic mild solutions to semilinear integral equations with $S^{p}$-weighted pseudo almost automorphic coefficients. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5525-5537. doi: 10.3934/dcds.2013.33.5525

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (449)
  • HTML views (380)
  • Cited by (0)

Other articles
by authors

[Back to Top]