# American Institute of Mathematical Sciences

June  2019, 13(3): 653-677. doi: 10.3934/ipi.2019030

## A dual EM algorithm for TV regularized Gaussian mixture model in image segmentation

 1 Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China 2 Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China 3 Depart of Mathematics, University of Bergen, P. O. Box 7800, N-5020, Bergen, Norway

* Corresponding author: Jun Liu

Received  May 2018 Revised  October 2018 Published  March 2019

A dual expectation-maximization (EM) algorithm for total variation (TV) regularized Gaussian mixture model (GMM) is proposed in this paper. The algorithm is built upon the EM algorithm with TV regularization (EM-TV) model which combines the statistical and variational methods together for image segmentation. Inspired by the projection algorithm proposed by Chambolle, we give a dual algorithm for the EM-TV model. The related dual problem is smooth and can be easily solved by a projection gradient method, which is stable and fast. Given the parameters of GMM, the proposed algorithm can be seen as a forward-backward splitting method which converges. This method can be easily extended to many other applications. Numerical results show that our algorithm can provide high quality segmentation results with fast computation speed. Compared with the well-known statistics based methods such as hidden Markov random field with EM method (HMRF-EM), the proposed algorithm has a better performance. The proposed method could also be applied to MRI segmentation such as SPM8 software and improve the segmentation results.

Citation: Shi Yan, Jun Liu, Haiyang Huang, Xue-Cheng Tai. A dual EM algorithm for TV regularized Gaussian mixture model in image segmentation. Inverse Problems and Imaging, 2019, 13 (3) : 653-677. doi: 10.3934/ipi.2019030
##### References:
 [1] W. Allard, Total variation regularization for image denoising, i. geometric theory, SIAM Journal on Mathematical Analysis, 39 (2007), 1150-1190.  doi: 10.1137/060662617. [2] U. Amato and W. Hughes, Maximum entropy regularization of fredholm integral equations of the first kind, Inverse Problems, 7 (1991), 793-808.  doi: 10.1088/0266-5611/7/6/004. [3] P. Arbelaez, M. Maire, C. Fowlkes and J. Malik, Contour detection and hierarchical image segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33 (2011), 898-916.  doi: 10.1109/TPAMI.2010.161. [4] J. Ashburner and K. J. Friston, Unified segmentation, NeuroImage, 26 (2005), 839–851, URL http://www.sciencedirect.com/science/article/pii/S1053811905001102. doi: 10.1016/j.neuroimage.2005.02.018. [5] E. Bae, J. Yuan and X. Tai, Global minimization for continuous multiphase partitioning problems using a dual approach, International Journal of Computer Vision, 92 (2011), 112-129.  doi: 10.1007/s11263-010-0406-y. [6] J. Baillon and G. Haddad, Quelques propriétés des opérateurs angle-bornés etn-cycliquement monotones, Israel Journal of Mathematics, 26 (1977), 137-150.  doi: 10.1007/BF03007664. [7] Y. Boykov and V. Kolmogorov, An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision, Energy Minimization Methods in Computer Vision and Pattern Recognition, (2001), 359–374. doi: 10.1007/3-540-44745-8_24. [8] Y. Boykov, O. Veksler and R. Zabih, Fast approximate energy minimization via graph cuts, IEEE Transactions on Pattern Analysis and Machine Intelligence, 23 (2001), 1222-1239.  doi: 10.1109/ICCV.1999.791245. [9] C. Carson, S. Belongie, H. Greenspan and J. Malik, Blobworld: Image segmentation using expectation-maximization and its application to image querying, IEEE Transactions on Pattern Analysis and Machine Intelligence, 24 (2002), 1026-1038.  doi: 10.1109/TPAMI.2002.1023800. [10] A. Chambolle, An algorithm for total variation minimization and applications, Journal of Mathematical Imaging and Vision, 20 (2004), 89-97.  doi: 10.1023/B:JMIV.0000011325.36760.1e. [11] T. Chan, S. Esegodlu and A. Yip, Recent developments in total variation image restoration, Mathematical Models of Computer Vision, 17 (2005). [12] T. Chan and L. Vese, Active contours without edges, IEEE Transactions on Image Processing, 10 (2001), 266-277.  doi: 10.1109/83.902291. [13] Y. Chiang, P. Borbat and J. Freed, Maximum entropy: A complement to tikhonov regularization for determination of pair distance distributions by pulsed esr, Journal of Magnetic Resonance, 177 (2005), 184-196.  doi: 10.1016/j.jmr.2005.07.021. [14] P. Combettes, Solving monotone inclusions via compositions of nonexpansive averaged operators, Optimization, 53 (2004), 475-504.  doi: 10.1080/02331930412331327157. [15] P. Combettes and V. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Modeling and Simulation, 4 (2005), 1168-1200.  doi: 10.1137/050626090. [16] A. Dempster, N. Laird and D. Rubin, Maximum likelihood from incomplete data via the em algorithm, Journal of the Royal Statistical Society. Series B (methodological), 39 (1977), 1-38.  doi: 10.1111/j.2517-6161.1977.tb01600.x. [17] J. Duarte-Carvajalino, G. Sapiro, G. Yu and L. Carin, Online adaptive statistical compressed sensing of gaussian mixture models, arXiv preprint, arXiv: 1112.5895. [18] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, SIAM, 1999. doi: 10.1137/1.9781611971088. [19] L. Evans and R. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, 2015. [20] S. Gao and T. Bui, Image segmentation and selective smoothing by using mumford-shah model, IEEE Transactions on Image Processing, 14 (2005), 1537-1549. [21] T. Goldstein and S. Osher, The split bregman method for l1-regularized problems, SIAM Journal on Imaging Sciences, 2 (2009), 323-343.  doi: 10.1137/080725891. [22] R. Gonzalez, R. Woods and S. Eddins, Digital Image Publishing Using MATLAB, Prentice Hall, 2004. [23] L. Gupta and T. Sortrakul, A gaussian-mixture-based image segmentation algorithm, Pattern Recognition, 31 (1998), 315-325.  doi: 10.1016/S0031-3203(97)00045-9. [24] J. Hiriart-Urruty and C. Lemar chal, Convex Analysis and Minimization Algorithms Ⅰ, Springer, 1993. doi: 10.1007/978-3-662-02796-7. [25] H. Ishikawa, Exact optimization for markov random fields with convex priors, IEEE Transactions on Pattern Analysis and Machine Intelligence, 25 (2003), 1333-1336.  doi: 10.1109/TPAMI.2003.1233908. [26] J. Liu, Y. Ku and S. Leung, Expectation–maximization algorithm with total variation regularization for vector-valued image segmentation, Journal of Visual Communication and Image Representation, 23 (2012), 1234-1244.  doi: 10.1016/j.jvcir.2012.09.002. [27] J. Liu, X. Tai, H. Huang and Z. Huan, A weighted dictionary learning model for denoising images corrupted by mixed noise, IEEE Transactions on Image Processing, 22 (2013), 1108-1120.  doi: 10.1109/TIP.2012.2227766. [28] J. Liu, X. Tai, S. Leung and H. Huang, A new continuous max-flow algorithm for multiphase image segmentation using super-level set functions, Journal of Visual Communication & Image Representation, 25 (2014), 1472-1488.  doi: 10.1016/j.jvcir.2014.04.011. [29] D. Martin, C. Fowlkes, D. Tal and J. Malik, A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, in Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on, vol. 2, IEEE, 2001,416–423. doi: 10.1109/ICCV.2001.937655. [30] G. McLachlan and T. Krishnan, The EM Algorithm and Extensions, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1997. [31] D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Communications on Pure and Applied Mathematics, 42 (1989), 577-685.  doi: 10.1002/cpa.3160420503. [32] S. Osher and J. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulations, Journal of Computational Physics, 79 (1988), 12-49.  doi: 10.1016/0021-9991(88)90002-2. [33] L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60 (1992), 259-268.  doi: 10.1016/0167-2789(92)90242-F. [34] M. Teboulle, A unified continuous optimization framework for center-based clustering methods, Journal of Machine Learning Research, 8 (2007), 65-102. [35] L. Vese and T. Chan, A multiphase level set framework for image segmentation using the mumford and shah model, International Journal of Computer Vision, 50 (2002), 271-293. [36] Q. Wang, Hmrf-em-image: Implementation of the hidden markov random field model and its expectation-maximization algorithm, arXiv preprint arXiv: 1207.3510. [37] C. Wu and X. Tai, Augmented lagrangian method, dual methods, and split bregman iteration for rof, vectorial tv, and high order models, SIAM Journal on Imaging Sciences, 3 (2010), 300-339.  doi: 10.1137/090767558. [38] C. Wu, On the convergence properties of the em algorithm, The Annals of Statistics, 11 (1983), 95-103.  doi: 10.1214/aos/1176346060. [39] G. Yu and G. Sapiro, Statistical compressed sensing of gaussian mixture models, IEEE Transactions on Signal Processing, 59 (2011), 5842-5858.  doi: 10.1109/TSP.2011.2168521. [40] J. Yuan, E. Bae, X. Tai and Y. Boykov, A continuous max-flow approach to potts model, Computer Vision (ECCV 2010), European Conference on, 2010,379–392. doi: 10.1007/978-3-642-15567-3_28. [41] Y. Zhang, M. Brady and S. Smith, Segmentation of brain mr images through a hidden markov random field model and the expectation-maximization algorithm, IEEE Transactions on Medical Imaging, 20 (2001), 45-57.  doi: 10.1109/42.906424. [42] M. Zhu, S. J. Wright and T. Chan, Duality-based algorithms for total-variation-regularized image restoration, Computational Optimization and Applications, 47 (2010), 377-400.  doi: 10.1007/s10589-008-9225-2.

show all references

##### References:
 [1] W. Allard, Total variation regularization for image denoising, i. geometric theory, SIAM Journal on Mathematical Analysis, 39 (2007), 1150-1190.  doi: 10.1137/060662617. [2] U. Amato and W. Hughes, Maximum entropy regularization of fredholm integral equations of the first kind, Inverse Problems, 7 (1991), 793-808.  doi: 10.1088/0266-5611/7/6/004. [3] P. Arbelaez, M. Maire, C. Fowlkes and J. Malik, Contour detection and hierarchical image segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33 (2011), 898-916.  doi: 10.1109/TPAMI.2010.161. [4] J. Ashburner and K. J. Friston, Unified segmentation, NeuroImage, 26 (2005), 839–851, URL http://www.sciencedirect.com/science/article/pii/S1053811905001102. doi: 10.1016/j.neuroimage.2005.02.018. [5] E. Bae, J. Yuan and X. Tai, Global minimization for continuous multiphase partitioning problems using a dual approach, International Journal of Computer Vision, 92 (2011), 112-129.  doi: 10.1007/s11263-010-0406-y. [6] J. Baillon and G. Haddad, Quelques propriétés des opérateurs angle-bornés etn-cycliquement monotones, Israel Journal of Mathematics, 26 (1977), 137-150.  doi: 10.1007/BF03007664. [7] Y. Boykov and V. Kolmogorov, An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision, Energy Minimization Methods in Computer Vision and Pattern Recognition, (2001), 359–374. doi: 10.1007/3-540-44745-8_24. [8] Y. Boykov, O. Veksler and R. Zabih, Fast approximate energy minimization via graph cuts, IEEE Transactions on Pattern Analysis and Machine Intelligence, 23 (2001), 1222-1239.  doi: 10.1109/ICCV.1999.791245. [9] C. Carson, S. Belongie, H. Greenspan and J. Malik, Blobworld: Image segmentation using expectation-maximization and its application to image querying, IEEE Transactions on Pattern Analysis and Machine Intelligence, 24 (2002), 1026-1038.  doi: 10.1109/TPAMI.2002.1023800. [10] A. Chambolle, An algorithm for total variation minimization and applications, Journal of Mathematical Imaging and Vision, 20 (2004), 89-97.  doi: 10.1023/B:JMIV.0000011325.36760.1e. [11] T. Chan, S. Esegodlu and A. Yip, Recent developments in total variation image restoration, Mathematical Models of Computer Vision, 17 (2005). [12] T. Chan and L. Vese, Active contours without edges, IEEE Transactions on Image Processing, 10 (2001), 266-277.  doi: 10.1109/83.902291. [13] Y. Chiang, P. Borbat and J. Freed, Maximum entropy: A complement to tikhonov regularization for determination of pair distance distributions by pulsed esr, Journal of Magnetic Resonance, 177 (2005), 184-196.  doi: 10.1016/j.jmr.2005.07.021. [14] P. Combettes, Solving monotone inclusions via compositions of nonexpansive averaged operators, Optimization, 53 (2004), 475-504.  doi: 10.1080/02331930412331327157. [15] P. Combettes and V. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Modeling and Simulation, 4 (2005), 1168-1200.  doi: 10.1137/050626090. [16] A. Dempster, N. Laird and D. Rubin, Maximum likelihood from incomplete data via the em algorithm, Journal of the Royal Statistical Society. Series B (methodological), 39 (1977), 1-38.  doi: 10.1111/j.2517-6161.1977.tb01600.x. [17] J. Duarte-Carvajalino, G. Sapiro, G. Yu and L. Carin, Online adaptive statistical compressed sensing of gaussian mixture models, arXiv preprint, arXiv: 1112.5895. [18] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, SIAM, 1999. doi: 10.1137/1.9781611971088. [19] L. Evans and R. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, 2015. [20] S. Gao and T. Bui, Image segmentation and selective smoothing by using mumford-shah model, IEEE Transactions on Image Processing, 14 (2005), 1537-1549. [21] T. Goldstein and S. Osher, The split bregman method for l1-regularized problems, SIAM Journal on Imaging Sciences, 2 (2009), 323-343.  doi: 10.1137/080725891. [22] R. Gonzalez, R. Woods and S. Eddins, Digital Image Publishing Using MATLAB, Prentice Hall, 2004. [23] L. Gupta and T. Sortrakul, A gaussian-mixture-based image segmentation algorithm, Pattern Recognition, 31 (1998), 315-325.  doi: 10.1016/S0031-3203(97)00045-9. [24] J. Hiriart-Urruty and C. Lemar chal, Convex Analysis and Minimization Algorithms Ⅰ, Springer, 1993. doi: 10.1007/978-3-662-02796-7. [25] H. Ishikawa, Exact optimization for markov random fields with convex priors, IEEE Transactions on Pattern Analysis and Machine Intelligence, 25 (2003), 1333-1336.  doi: 10.1109/TPAMI.2003.1233908. [26] J. Liu, Y. Ku and S. Leung, Expectation–maximization algorithm with total variation regularization for vector-valued image segmentation, Journal of Visual Communication and Image Representation, 23 (2012), 1234-1244.  doi: 10.1016/j.jvcir.2012.09.002. [27] J. Liu, X. Tai, H. Huang and Z. Huan, A weighted dictionary learning model for denoising images corrupted by mixed noise, IEEE Transactions on Image Processing, 22 (2013), 1108-1120.  doi: 10.1109/TIP.2012.2227766. [28] J. Liu, X. Tai, S. Leung and H. Huang, A new continuous max-flow algorithm for multiphase image segmentation using super-level set functions, Journal of Visual Communication & Image Representation, 25 (2014), 1472-1488.  doi: 10.1016/j.jvcir.2014.04.011. [29] D. Martin, C. Fowlkes, D. Tal and J. Malik, A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, in Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on, vol. 2, IEEE, 2001,416–423. doi: 10.1109/ICCV.2001.937655. [30] G. McLachlan and T. Krishnan, The EM Algorithm and Extensions, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1997. [31] D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Communications on Pure and Applied Mathematics, 42 (1989), 577-685.  doi: 10.1002/cpa.3160420503. [32] S. Osher and J. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulations, Journal of Computational Physics, 79 (1988), 12-49.  doi: 10.1016/0021-9991(88)90002-2. [33] L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60 (1992), 259-268.  doi: 10.1016/0167-2789(92)90242-F. [34] M. Teboulle, A unified continuous optimization framework for center-based clustering methods, Journal of Machine Learning Research, 8 (2007), 65-102. [35] L. Vese and T. Chan, A multiphase level set framework for image segmentation using the mumford and shah model, International Journal of Computer Vision, 50 (2002), 271-293. [36] Q. Wang, Hmrf-em-image: Implementation of the hidden markov random field model and its expectation-maximization algorithm, arXiv preprint arXiv: 1207.3510. [37] C. Wu and X. Tai, Augmented lagrangian method, dual methods, and split bregman iteration for rof, vectorial tv, and high order models, SIAM Journal on Imaging Sciences, 3 (2010), 300-339.  doi: 10.1137/090767558. [38] C. Wu, On the convergence properties of the em algorithm, The Annals of Statistics, 11 (1983), 95-103.  doi: 10.1214/aos/1176346060. [39] G. Yu and G. Sapiro, Statistical compressed sensing of gaussian mixture models, IEEE Transactions on Signal Processing, 59 (2011), 5842-5858.  doi: 10.1109/TSP.2011.2168521. [40] J. Yuan, E. Bae, X. Tai and Y. Boykov, A continuous max-flow approach to potts model, Computer Vision (ECCV 2010), European Conference on, 2010,379–392. doi: 10.1007/978-3-642-15567-3_28. [41] Y. Zhang, M. Brady and S. Smith, Segmentation of brain mr images through a hidden markov random field model and the expectation-maximization algorithm, IEEE Transactions on Medical Imaging, 20 (2001), 45-57.  doi: 10.1109/42.906424. [42] M. Zhu, S. J. Wright and T. Chan, Duality-based algorithms for total-variation-regularized image restoration, Computational Optimization and Applications, 47 (2010), 377-400.  doi: 10.1007/s10589-008-9225-2.
Comparison of Dual EM-TV, Original EM-TV [26] and HMRF-EM methods for 2 classes segmentation
Enlarged red square regions in Figure 1
Comparison of Dual EM-TV, Original EM-TV [26] and HMRF-EM methods for 4 classes segmentation
Enlarged red square regions in Figure 3
An image with two regions, which are the same mean but different variance, and the histogram
Comparison of segmentation results of GMM-EM, Dual EM-TV and CV model on region with same mean but different variances image
Comparison between Dual EM-TV and HMRF-EM method
Segmentation results by Dual EM-TV in color images for two-region images
Segmentation results by Dual EM-TV in color images for multi-region images
Segmentation comparison under different noise levels. Noise standard deviation: A: 120/255, B: 240/255, C: 300/255, D: 390/255
Segmentation comparison of the same multi-region image by different noise levels. Noise standard deviation: A: 50/255, B: 60/255, C: 70/255, D: 80/255
Results of SPM8 with one slice of MR Images. First row: left image, MRI with 0% RF and 0% noise; right: MRI with 40% RF and 9% noise). Second and third rows: the first and third columns are the newsegment method for left and right images, respectively; the second and fourth columns are the proposed method for left and right images, respectively
Comparison of 2 classes segmentation for Dual EM-TV, Original EM-TV [26] and HMRF-EM method (Heart image with size $615\times 615$)
 Methods CPU time (seconds) Accuracy (SAI) Dual EM-TV 1.233 99.70% Original EM-TV [26] 9.482 98.02% HMRF-EM 4n 4.052 91.84% HMRF-EM 8n 3.052 97.38% %HMRF-EM 12n 2.653 98.69% HMRF-EM 20n 1.528 99.24%
 Methods CPU time (seconds) Accuracy (SAI) Dual EM-TV 1.233 99.70% Original EM-TV [26] 9.482 98.02% HMRF-EM 4n 4.052 91.84% HMRF-EM 8n 3.052 97.38% %HMRF-EM 12n 2.653 98.69% HMRF-EM 20n 1.528 99.24%
Comparison of 4 classes segmentation for Dual EM-TV, Original EM-TV [26] and HMRF-EM methods (4-color image with size $600\times 600$)
 Methods CPU time (seconds) Accuracy (SAI) Dual EM-TV 1.699 99.90% Original EM-TV [26] 18.502 99.02% HMRF-EM 4n 3.480 97.39% HMRF-EM 8n 3.202 99.81% %HMRF-EM 12n 2.696 99.87% HMRF-EM 20n 2.388 99.83%
 Methods CPU time (seconds) Accuracy (SAI) Dual EM-TV 1.699 99.90% Original EM-TV [26] 18.502 99.02% HMRF-EM 4n 3.480 97.39% HMRF-EM 8n 3.202 99.81% %HMRF-EM 12n 2.696 99.87% HMRF-EM 20n 2.388 99.83%
Comparison of DM in SPM8 on brain images
 noise level 5% 5% 7% 7% 9% 9% brain part WM GM WM GM WM GM Dual EM-TV 0.9380 0.9122 0.9218 0.8970 0.9035 0.8818 New Segment 0.9317 0.9099 0.9035 0.8822 0.8759 0.8536
 noise level 5% 5% 7% 7% 9% 9% brain part WM GM WM GM WM GM Dual EM-TV 0.9380 0.9122 0.9218 0.8970 0.9035 0.8818 New Segment 0.9317 0.9099 0.9035 0.8822 0.8759 0.8536
 [1] Baoli Shi, Zhi-Feng Pang, Jing Xu. Image segmentation based on the hybrid total variation model and the K-means clustering strategy. Inverse Problems and Imaging, 2016, 10 (3) : 807-828. doi: 10.3934/ipi.2016022 [2] Xiaojing Ye, Haomin Zhou. Fast total variation wavelet inpainting via approximated primal-dual hybrid gradient algorithm. Inverse Problems and Imaging, 2013, 7 (3) : 1031-1050. doi: 10.3934/ipi.2013.7.1031 [3] Juan C. Moreno, V. B. Surya Prasath, João C. Neves. Color image processing by vectorial total variation with gradient channels coupling. Inverse Problems and Imaging, 2016, 10 (2) : 461-497. doi: 10.3934/ipi.2016008 [4] Marc Bocquet, Julien Brajard, Alberto Carrassi, Laurent Bertino. Bayesian inference of chaotic dynamics by merging data assimilation, machine learning and expectation-maximization. Foundations of Data Science, 2020, 2 (1) : 55-80. doi: 10.3934/fods.2020004 [5] Zhengmeng Jin, Chen Zhou, Michael K. Ng. A coupled total variation model with curvature driven for image colorization. Inverse Problems and Imaging, 2016, 10 (4) : 1037-1055. doi: 10.3934/ipi.2016031 [6] Sudeb Majee, Subit K. Jain, Rajendra K. Ray, Ananta K. Majee. A fuzzy edge detector driven telegraph total variation model for image despeckling. Inverse Problems and Imaging, 2022, 16 (2) : 367-396. doi: 10.3934/ipi.2021054 [7] Ming Yan, Alex A. T. Bui, Jason Cong, Luminita A. Vese. General convergent expectation maximization (EM)-type algorithms for image reconstruction. Inverse Problems and Imaging, 2013, 7 (3) : 1007-1029. doi: 10.3934/ipi.2013.7.1007 [8] Xavier Bresson, Tony F. Chan. Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Problems and Imaging, 2008, 2 (4) : 455-484. doi: 10.3934/ipi.2008.2.455 [9] Ke Chen, Yiqiu Dong, Michael Hintermüller. A nonlinear multigrid solver with line Gauss-Seidel-semismooth-Newton smoother for the Fenchel pre-dual in total variation based image restoration. Inverse Problems and Imaging, 2011, 5 (2) : 323-339. doi: 10.3934/ipi.2011.5.323 [10] Mujibur Rahman Chowdhury, Jun Zhang, Jing Qin, Yifei Lou. Poisson image denoising based on fractional-order total variation. Inverse Problems and Imaging, 2020, 14 (1) : 77-96. doi: 10.3934/ipi.2019064 [11] Haijuan Hu, Jacques Froment, Baoyan Wang, Xiequan Fan. Spatial-Frequency domain nonlocal total variation for image denoising. Inverse Problems and Imaging, 2020, 14 (6) : 1157-1184. doi: 10.3934/ipi.2020059 [12] Yunhai Xiao, Junfeng Yang, Xiaoming Yuan. Alternating algorithms for total variation image reconstruction from random projections. Inverse Problems and Imaging, 2012, 6 (3) : 547-563. doi: 10.3934/ipi.2012.6.547 [13] Jie Huang, Xiaoping Yang, Yunmei Chen. A fast algorithm for global minimization of maximum likelihood based on ultrasound image segmentation. Inverse Problems and Imaging, 2011, 5 (3) : 645-657. doi: 10.3934/ipi.2011.5.645 [14] Leyu Hu, Wenxing Zhang, Xingju Cai, Deren Han. A parallel operator splitting algorithm for solving constrained total-variation retinex. Inverse Problems and Imaging, 2020, 14 (6) : 1135-1156. doi: 10.3934/ipi.2020058 [15] Jianping Zhang, Ke Chen, Bo Yu, Derek A. Gould. A local information based variational model for selective image segmentation. Inverse Problems and Imaging, 2014, 8 (1) : 293-320. doi: 10.3934/ipi.2014.8.293 [16] Sören Bartels, Marijo Milicevic. Iterative finite element solution of a constrained total variation regularized model problem. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1207-1232. doi: 10.3934/dcdss.2017066 [17] Wei Wang, Ling Pi, Michael K. Ng. Saturation-Value Total Variation model for chromatic aberration correction. Inverse Problems and Imaging, 2020, 14 (4) : 733-755. doi: 10.3934/ipi.2020034 [18] Liyan Ma, Lionel Moisan, Jian Yu, Tieyong Zeng. A stable method solving the total variation dictionary model with $L^\infty$ constraints. Inverse Problems and Imaging, 2014, 8 (2) : 507-535. doi: 10.3934/ipi.2014.8.507 [19] Zhiwei Tian, Yanyan Shi, Meng Wang, Xiaolong Kong, Lei Li, Feng Fu. A wavelet frame constrained total generalized variation model for imaging conductivity distribution. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2021074 [20] Lekbir Afraites, Aissam Hadri, Amine Laghrib, Mourad Nachaoui. A non-convex denoising model for impulse and Gaussian noise mixture removing using bi-level parameter identification. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022001

2020 Impact Factor: 1.639