We provide a reconstruction scheme for complex-valued potentials in $ H^s (\mathbb{R}^2) $ for $ s > 0 $. The procedure extends the method of Bukhgeim relying on quadratic exponential solutions.
Citation: |
[1] |
K. Astala, D. Faraco and K. M. Rogers, Unbounded potential recovery in the plane, Annales Scientifiques de l'École Normale Supériure. Quatrième Série, 49 (2016), 1027-1051.
doi: 10.24033/asens.2302.![]() ![]() ![]() |
[2] |
K. Astala and L. Päivärinta, Calderón Inverse Conductivity problem in plane, Annals of Mathematics, 163 (2006), 265-299.
![]() |
[3] |
J. A. Barceló, J. Bennett, A. Carbery and K. M. Rogers, On the dimension of divergence sets of dispersive equations, Mathematische Annalen, 349 (2011), 599-622.
doi: 10.1007/s00208-010-0529-z.![]() ![]() ![]() |
[4] |
R. Beals and R. R. Coifman, The D-bar approach to inverse scattering and nonlinear evolutions, Physica D: Nonlinear Phenomena, 18 (1986), 242-249.
doi: 10.1016/0167-2789(86)90184-3.![]() ![]() ![]() |
[5] |
E. Blåsten, O. Yu. Imanuvilov and M. Yamamoto, Stability and uniqueness for a two-dimensional inverse boundary value problem for less regular potentials, Inverse Problems and Imaging, 9 (2015), 709-723.
doi: 10.3934/ipi.2015.9.709.![]() ![]() ![]() |
[6] |
R. M. Brown and G. A. Uhlmann, Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions, Communications in Partial Differential Equations, 22 (1997), 1009-1027.
doi: 10.1080/03605309708821292.![]() ![]() ![]() |
[7] |
A. L. Bukhgeim, Recovering a potential from Cauchy data in the two-dimensional case, Journal of Inverse and Ill-Posed Problems, 16 (2008), 19-33.
doi: 10.1515/jiip.2008.002.![]() ![]() ![]() |
[8] |
A. P. Calderón, On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), 65–73, Soc. Brasil. Mat., Rio de Janeiro, 1980.
![]() ![]() |
[9] |
P. Caro and K. M. Rogers, Global uniqueness for the Calderón problem with Lipschitz conductivities, Forum of Mathematics Pi, 4 (2016), e2, 28 pp.
doi: 10.1017/fmp.2015.9.![]() ![]() ![]() |
[10] |
I. Gel'fand, Some Aspects of Functional Analysis and Algebra, Proceedings of the International Congress of Mathematics, Amsterdam, 1954.
![]() |
[11] |
B. Haberman and D. Tataru, Uniqueness in Calderón's problem with Lipschitz conductivities, Duke Mathematical Journal, 162 (2013), 496-516.
doi: 10.1215/00127094-2019591.![]() ![]() ![]() |
[12] |
E. L. Lakshtanov, R. G. Novikov and B. R. Vainberg, A global Riemann-Hilbert problem for two-dimensional inverse scattering at fixed energy, Rendiconti dell'Istituto di Matematica dell'Università di Trieste, 38 (2016), 21-47.
![]() ![]() |
[13] |
E. L. Lakshtanov, J. Tejero and B. R. Vainberg, Uniqueness in the inverse conductivity problem for complex-valued Lipschitz conductivities in the plane, SIAM Journal on Mathematical Analysis, 49 (2017), 3766-3775.
doi: 10.1137/17M1120981.![]() ![]() ![]() |
[14] |
E. L. Lakshtanov and B. R. Vainberg, Recovery of $L^p$-potential in the plane, J. Inverse Ill-Posed Probl., 25 (2017), 633-651.
doi: 10.1515/jiip-2016-0052.![]() ![]() ![]() |
[15] |
A. I. Nachman, Reconstructions from boundary measurements, Annals of Mathematics, 128 (1988), 531-576.
doi: 10.2307/1971435.![]() ![]() ![]() |
[16] |
A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Annals of Mathematics, 143 (1996), 71-96.
doi: 10.2307/2118653.![]() ![]() ![]() |
[17] |
R. G. Novikov, Multidimensional inverse spectral problem for the equation $-\Delta \psi + (v(x) - Eu(x)) \psi = 0$, Functional Analysis and Its Applications, 22 (1988), 263-272.
doi: 10.1007/BF01077418.![]() ![]() ![]() |
[18] |
J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Annals of Mathematics, 125 (1987), 153-169.
doi: 10.2307/1971291.![]() ![]() ![]() |
[19] |
J. Tejero, Reconstruction and stability for piecewise smooth potentials in the plane, SIAM Journal on Mathematical Analysis, 49 (2017), 398-420.
doi: 10.1137/16M1085048.![]() ![]() ![]() |