• Previous Article
    Identifiability of diffusion coefficients for source terms of non-uniform sign
  • IPI Home
  • This Issue
  • Next Article
    On finding a buried obstacle in a layered medium via the time domain enclosure method in the case of possible total reflection phenomena
October  2019, 13(5): 983-1006. doi: 10.3934/ipi.2019044

On increasing stability of the continuation for elliptic equations of second order without (pseudo)convexity assumptions

Department of Mathematics, Statistics, and Physics, Wichita State University, Wichita, KS 67260-0033, USA

Received  September 2018 Revised  May 2019 Published  July 2019

Fund Project: The author is supported by NSF grant 15-14886 and the Emylou Keith and Betty Dutcher Distinguished Professorship.

We derive bounds of solutions of the Cauchy problem for general elliptic partial differential equations of second order containing parameter (wave number) $ k $ which are getting nearly Lipschitz for large $ k $. Proofs use energy estimates combined with splitting solutions into low and high frequencies parts, an associated hyperbolic equation and the Fourier-Bros-Iagolnitzer transform to replace the hyperbolic equation with an elliptic equation without parameter $ k $. The results suggest a better resolution in prospecting by various (acoustic, electromagnetic, etc) stationary waves with higher wave numbers without any geometric assumptions on domains and observation sites.

Citation: Victor Isakov. On increasing stability of the continuation for elliptic equations of second order without (pseudo)convexity assumptions. Inverse Problems and Imaging, 2019, 13 (5) : 983-1006. doi: 10.3934/ipi.2019044
References:
[1]

G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability in the Cauchy problem for elliptic equations, Inverse Problems, 25 (2009), 123004, 47pp. doi: 10.1088/0266-5611/25/12/123004.

[2]

D. Aralumallige Subbarayappa and V. Isakov, On increased stability in the continuation for the Helmholtz equation, Inverse Problems, 23 (2007), 1689-1697.  doi: 10.1088/0266-5611/23/4/019.

[3]

D. Aralumallige Subbarayappa and V. Isakov, Increasing stability of the continuation for the Maxwell system, Inverse Problems, 26 (2010), 074005, 14pp. doi: 10.1088/0266-5611/26/7/074005.

[4]

R. BosiY. Kurylev and M. Lassas, Stability of the unique continuation for the wave operator via Tataru's inequality and applications, J. Diff. Equat., 260 (2016), 6451-6492.  doi: 10.1016/j.jde.2015.12.043.

[5]

J. ChengV. Isakov and S. Lu, Increasing stability in the inverse source problems with many frequencies, J. Diff. Equat., 260 (2016), 4786-4804.  doi: 10.1016/j.jde.2015.11.030.

[6]

M. Eller, V. Isakov, G. Nakamura and D. Tataru, Uniqueness and Stability in the Cauchy Problem for Maxwell' and elasticity systems, in Nonlinear Partial Differential Equations and Their Applications, Collége de France Seminar, Vol. XIV (Paris, 1997/1998), North-Holland, Elsevier Science, 31 (2002), 329–349. doi: 10.1016/S0168-2024(02)80016-9.

[7]

T. Hrycak and V. Isakov, Increased stability in the continuation of solutions to the Helmholtz equation, Inverse Problems, 20 (2004), 697-712.  doi: 10.1088/0266-5611/20/3/004.

[8]

V. Isakov, Increased stability in the continuation for the Helmholtz equation with variable coefficient, Contemp. Math., AMS, 426 (2007), 255-267.  doi: 10.1090/conm/426/08192.

[9]

V. Isakov, Increased stability in the Cauchy problem for some elliptic equations, in Instability in Models Connected with Fluid Flow (eds. C. Bardos, A. Fursikov), Intern. Math. Series, Springer-Verlag, 6 (2008), 339–362. doi: 10.1007/978-0-387-75217-4_8.

[10]

V. Isakov, Increasing stability for the Schrödinger potential from the Dirichlet-to-Neumann map, Discr. Cont. Dyn. Syst. S, 4 (2011), 631-640.  doi: 10.3934/dcdss.2011.4.631.

[11]

V. Isakov, Increasing stability of the continuation for general elliptic equations of second order, in New Prospects in Direct, Inverse, and Control Problems for Evolution Equations, Springer INdAM Series 10 (2014), 203–218. doi: 10.1007/978-3-319-11406-4_10.

[12]

V. Isakov, Inverse Problems for Partial Differential Equations, Springer-Verlag, New York, 2017. doi: 10.1007/978-3-319-51658-5.

[13]

V. Isakov and S. Kindermann, Regions of stability in the Cauchy problem for the Helmholtz equation, Methods Appl. of Anal., 18 (2011), 1-29.  doi: 10.4310/MAA.2011.v18.n1.a1.

[14]

V. Isakov and S. Lu, Inverse source problems without (pseudo)convexity assumptions, Inv. Probl. Imag., 12 (2018), 955-970.  doi: 10.3934/ipi.2018040.

[15]

V. Isakov and S. Lu, Increasing stability in the inverse source problems with attenuation and many frequencies, SIAM J. Appl. Math., 78 (2018), 1-18.  doi: 10.1137/17M1112704.

[16]

V. IsakovR.-Y. Lai and J.-N. Wang, Increasing stability for the conductivity and attenuation coefficients, SIAM J. Math. Anal., 48 (2016), 569-594.  doi: 10.1137/15M1019052.

[17]

V. Isakov and J.-N. Wang, Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to Neumann map, Inv. Probl. Imag., 8 (2014), 1139-1150.  doi: 10.3934/ipi.2014.8.1139.

[18]

F. John, Continuous Dependence on Data for Solutions of Partial Differential Equations With a Prescribed Bound, Comm. Pure Appl. Math., 13 (1960), 551-585.  doi: 10.1002/cpa.3160130402.

[19]

L. Robbiano, Theoreme d'unicite adapte au controle des solutions des problemes hyperboliques, Comm. Part. Diff. Equat., 16 (1991), 789-800.  doi: 10.1080/03605309108820778.

[20]

L. Robbiano, Fonction de cout et controle des solutions des equations hyperboliques, Asympt. Anal., 10 (1995), 95-115. 

[21]

L. Robbiano and C. Zuily, Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients, Invent. Math., 131 (1998), 493-529.  doi: 10.1007/s002220050212.

[22]

D. Tataru, Unique continuation for solutions to PDE: Between Hörmander's Theorem and Holmgren's Theorem, Comm. Part. Diff. Equat., 20 (1995), 855-884.  doi: 10.1080/03605309508821117.

[23]

S. Vessella, Stability estimates for an inverse hyperbolic initial boundary value problem with unknown boundaries, SIAM J. Math. Anal., 47 (2016), 1419-1457.  doi: 10.1137/140976212.

[24] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. 

show all references

References:
[1]

G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability in the Cauchy problem for elliptic equations, Inverse Problems, 25 (2009), 123004, 47pp. doi: 10.1088/0266-5611/25/12/123004.

[2]

D. Aralumallige Subbarayappa and V. Isakov, On increased stability in the continuation for the Helmholtz equation, Inverse Problems, 23 (2007), 1689-1697.  doi: 10.1088/0266-5611/23/4/019.

[3]

D. Aralumallige Subbarayappa and V. Isakov, Increasing stability of the continuation for the Maxwell system, Inverse Problems, 26 (2010), 074005, 14pp. doi: 10.1088/0266-5611/26/7/074005.

[4]

R. BosiY. Kurylev and M. Lassas, Stability of the unique continuation for the wave operator via Tataru's inequality and applications, J. Diff. Equat., 260 (2016), 6451-6492.  doi: 10.1016/j.jde.2015.12.043.

[5]

J. ChengV. Isakov and S. Lu, Increasing stability in the inverse source problems with many frequencies, J. Diff. Equat., 260 (2016), 4786-4804.  doi: 10.1016/j.jde.2015.11.030.

[6]

M. Eller, V. Isakov, G. Nakamura and D. Tataru, Uniqueness and Stability in the Cauchy Problem for Maxwell' and elasticity systems, in Nonlinear Partial Differential Equations and Their Applications, Collége de France Seminar, Vol. XIV (Paris, 1997/1998), North-Holland, Elsevier Science, 31 (2002), 329–349. doi: 10.1016/S0168-2024(02)80016-9.

[7]

T. Hrycak and V. Isakov, Increased stability in the continuation of solutions to the Helmholtz equation, Inverse Problems, 20 (2004), 697-712.  doi: 10.1088/0266-5611/20/3/004.

[8]

V. Isakov, Increased stability in the continuation for the Helmholtz equation with variable coefficient, Contemp. Math., AMS, 426 (2007), 255-267.  doi: 10.1090/conm/426/08192.

[9]

V. Isakov, Increased stability in the Cauchy problem for some elliptic equations, in Instability in Models Connected with Fluid Flow (eds. C. Bardos, A. Fursikov), Intern. Math. Series, Springer-Verlag, 6 (2008), 339–362. doi: 10.1007/978-0-387-75217-4_8.

[10]

V. Isakov, Increasing stability for the Schrödinger potential from the Dirichlet-to-Neumann map, Discr. Cont. Dyn. Syst. S, 4 (2011), 631-640.  doi: 10.3934/dcdss.2011.4.631.

[11]

V. Isakov, Increasing stability of the continuation for general elliptic equations of second order, in New Prospects in Direct, Inverse, and Control Problems for Evolution Equations, Springer INdAM Series 10 (2014), 203–218. doi: 10.1007/978-3-319-11406-4_10.

[12]

V. Isakov, Inverse Problems for Partial Differential Equations, Springer-Verlag, New York, 2017. doi: 10.1007/978-3-319-51658-5.

[13]

V. Isakov and S. Kindermann, Regions of stability in the Cauchy problem for the Helmholtz equation, Methods Appl. of Anal., 18 (2011), 1-29.  doi: 10.4310/MAA.2011.v18.n1.a1.

[14]

V. Isakov and S. Lu, Inverse source problems without (pseudo)convexity assumptions, Inv. Probl. Imag., 12 (2018), 955-970.  doi: 10.3934/ipi.2018040.

[15]

V. Isakov and S. Lu, Increasing stability in the inverse source problems with attenuation and many frequencies, SIAM J. Appl. Math., 78 (2018), 1-18.  doi: 10.1137/17M1112704.

[16]

V. IsakovR.-Y. Lai and J.-N. Wang, Increasing stability for the conductivity and attenuation coefficients, SIAM J. Math. Anal., 48 (2016), 569-594.  doi: 10.1137/15M1019052.

[17]

V. Isakov and J.-N. Wang, Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to Neumann map, Inv. Probl. Imag., 8 (2014), 1139-1150.  doi: 10.3934/ipi.2014.8.1139.

[18]

F. John, Continuous Dependence on Data for Solutions of Partial Differential Equations With a Prescribed Bound, Comm. Pure Appl. Math., 13 (1960), 551-585.  doi: 10.1002/cpa.3160130402.

[19]

L. Robbiano, Theoreme d'unicite adapte au controle des solutions des problemes hyperboliques, Comm. Part. Diff. Equat., 16 (1991), 789-800.  doi: 10.1080/03605309108820778.

[20]

L. Robbiano, Fonction de cout et controle des solutions des equations hyperboliques, Asympt. Anal., 10 (1995), 95-115. 

[21]

L. Robbiano and C. Zuily, Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients, Invent. Math., 131 (1998), 493-529.  doi: 10.1007/s002220050212.

[22]

D. Tataru, Unique continuation for solutions to PDE: Between Hörmander's Theorem and Holmgren's Theorem, Comm. Part. Diff. Equat., 20 (1995), 855-884.  doi: 10.1080/03605309508821117.

[23]

S. Vessella, Stability estimates for an inverse hyperbolic initial boundary value problem with unknown boundaries, SIAM J. Math. Anal., 47 (2016), 1419-1457.  doi: 10.1137/140976212.

[24] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. 
[1]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems and Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

[2]

Michael V. Klibanov. A phaseless inverse scattering problem for the 3-D Helmholtz equation. Inverse Problems and Imaging, 2017, 11 (2) : 263-276. doi: 10.3934/ipi.2017013

[3]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems and Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

[4]

Karzan Berdawood, Abdeljalil Nachaoui, Rostam Saeed, Mourad Nachaoui, Fatima Aboud. An efficient D-N alternating algorithm for solving an inverse problem for Helmholtz equation. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 57-78. doi: 10.3934/dcdss.2021013

[5]

María Ángeles García-Ferrero, Angkana Rüland, Wiktoria Zatoń. Runge approximation and stability improvement for a partial data Calderón problem for the acoustic Helmholtz equation. Inverse Problems and Imaging, 2022, 16 (1) : 251-281. doi: 10.3934/ipi.2021049

[6]

Shuli Chen, Zewen Wang, Guolin Chen. Cauchy problem of non-homogenous stochastic heat equation and application to inverse random source problem. Inverse Problems and Imaging, 2021, 15 (4) : 619-639. doi: 10.3934/ipi.2021008

[7]

V. Varlamov, Yue Liu. Cauchy problem for the Ostrovsky equation. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 731-753. doi: 10.3934/dcds.2004.10.731

[8]

Adrien Dekkers, Anna Rozanova-Pierrat. Cauchy problem for the Kuznetsov equation. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 277-307. doi: 10.3934/dcds.2019012

[9]

Teemu Lukkari, Mikko Parviainen. Stability of degenerate parabolic Cauchy problems. Communications on Pure and Applied Analysis, 2015, 14 (1) : 201-216. doi: 10.3934/cpaa.2015.14.201

[10]

Soumen Senapati, Manmohan Vashisth. Stability estimate for a partial data inverse problem for the convection-diffusion equation. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021060

[11]

Rudong Zheng, Zhaoyang Yin. The Cauchy problem for a generalized Novikov equation. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3503-3519. doi: 10.3934/dcds.2017149

[12]

Wei-Kang Xun, Shou-Fu Tian, Tian-Tian Zhang. Inverse scattering transform for the integrable nonlocal Lakshmanan-Porsezian-Daniel equation. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021259

[13]

Yuan Li, Shou-Fu Tian. Inverse scattering transform and soliton solutions of an integrable nonlocal Hirota equation. Communications on Pure and Applied Analysis, 2022, 21 (1) : 293-313. doi: 10.3934/cpaa.2021178

[14]

Ioan Bucataru, Matias F. Dahl. Semi-basic 1-forms and Helmholtz conditions for the inverse problem of the calculus of variations. Journal of Geometric Mechanics, 2009, 1 (2) : 159-180. doi: 10.3934/jgm.2009.1.159

[15]

Fioralba Cakoni, Rainer Kress. Integral equations for inverse problems in corrosion detection from partial Cauchy data. Inverse Problems and Imaging, 2007, 1 (2) : 229-245. doi: 10.3934/ipi.2007.1.229

[16]

Lili Chang, Wei Gong, Guiquan Sun, Ningning Yan. PDE-constrained optimal control approach for the approximation of an inverse Cauchy problem. Inverse Problems and Imaging, 2015, 9 (3) : 791-814. doi: 10.3934/ipi.2015.9.791

[17]

Abderrahmane Habbal, Moez Kallel, Marwa Ouni. Nash strategies for the inverse inclusion Cauchy-Stokes problem. Inverse Problems and Imaging, 2019, 13 (4) : 827-862. doi: 10.3934/ipi.2019038

[18]

S. L. Ma'u, P. Ramankutty. An averaging method for the Helmholtz equation. Conference Publications, 2003, 2003 (Special) : 604-609. doi: 10.3934/proc.2003.2003.604

[19]

Yong-Kum Cho. A quadratic Fourier representation of the Boltzmann collision operator with an application to the stability problem. Kinetic and Related Models, 2012, 5 (3) : 441-458. doi: 10.3934/krm.2012.5.441

[20]

Arturo de Pablo, Guillermo Reyes, Ariel Sánchez. The Cauchy problem for a nonhomogeneous heat equation with reaction. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 643-662. doi: 10.3934/dcds.2013.33.643

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (262)
  • HTML views (225)
  • Cited by (4)

Other articles
by authors

[Back to Top]