-
Previous Article
A convergent numerical method for a multi-frequency inverse source problem in inhomogenous media
- IPI Home
- This Issue
-
Next Article
Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy data
Determining rough first order perturbations of the polyharmonic operator
1. | Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005, USA |
2. | The Vanguard Group, Malvern, PA 19335, USA |
We show that the knowledge of Dirichlet to Neumann map for rough $ A $ and $ q $ in $ (-\Delta)^m +A\cdot D +q $ for $ m \geq 2 $ for a bounded domain in $ \mathbb{R}^n $, $ n \geq 3 $ determines $ A $ and $ q $ uniquely. This unique identifiability is proved via construction of complex geometrical optics solutions with sufficient decay of remainder terms, by using property of products of functions in Sobolev spaces.
References:
[1] |
R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
![]() ![]() |
[2] |
Y. M. Assylbekov, Inverse problems for the perturbed polyharmonic operator with coefficients in Sobolev spaces with non-positive order, Inverse Problems, 32 (2016), 105009, 22pp.
doi: 10.1088/0266-5611/32/10/105009. |
[3] |
Y. M. Assylbekov and Y. Yang,
Determining the first order perturbation of a polyharmonic operator on admissible manifolds, Journal of Differential Equations, 262 (2017), 590-614.
doi: 10.1016/j.jde.2016.09.039. |
[4] |
A. Behzadan and N. Holst, Multiplication in Sobolev Spaces, Revisited, arXiv: 1512.07379. |
[5] |
R. Brown,
Global uniqueness in the impedance-imaging problem for less regular conductivities, SIAM J. Math. Anal., 27 (1996), 1049-1056.
doi: 10.1137/S0036141094271132. |
[6] |
A. P. Calderon, On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics, Rio de Janeiro, (1980), 65–73. |
[7] |
P. Caro and K. Rogers, Global uniqueness for the Calderón problem with Lipschitz conductivities, Forum of Mathematics, Pi, 4 (2016), e2, 28 pp.
doi: 10.1017/fmp.2015.9. |
[8] |
S. Chanillo,
A problem in electrical prospection and an $n$-dimensional Borg–Levinson theorem, Proc. Amer. Math. Soc., 108 (1990), 761-767.
doi: 10.2307/2047798. |
[9] |
L. D. Faddeev,
Increasing solutions of the Schrödinger equation, Soviet Physics Doklady, 10 (1966), 1033-1035.
|
[10] |
G. Folland, Real Analysis, Modern Techniques and their Applications, John Wiley & Sons, New York, 1984. |
[11] |
F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-12245-3. |
[12] |
A. Greenleaf, M. Lassas and G. Uhlmann,
The Calderón problem for conormal potentials. Ⅰ. Global uniqueness and reconstruction, Comm. Pure Appl. Math., 56 (2003), 328-352.
doi: 10.1002/cpa.10061. |
[13] |
G. Grubb, Distributions and Operators, Graduate Texts in Mathematics, 252. Springer, New York, 2009. |
[14] |
B. Haberman, Unique determination of a magnetic Schrdinger operator with unbounded magnetic potential from boundary data, arXiv: 1512.01580. |
[15] |
B. Haberman and D. Tataru,
Uniqueness in Calderón's problem with Lipschitz conductivities, Duke Math. J., 162 (2013), 496-516.
doi: 10.1215/00127094-2019591. |
[16] |
B. Haberman,
Uniqueness in Calderón's problem for conductivities with unbounded gradient, Comm, Math. Phys., 340 (2015), 639-659.
doi: 10.1007/s00220-015-2460-3. |
[17] |
M. Ikehata,
A special Green's function for the biharmonic operator and its application to an inverse boundary value problem, Comput. Math. Appl., 22 (1991), 53-66.
doi: 10.1016/0898-1221(91)90131-M. |
[18] |
V. Isakov,
Completeness of products of solutions and some inverse problems for PDE, J. Differential Equations, 92 (1991), 305-316.
doi: 10.1016/0022-0396(91)90051-A. |
[19] |
C. Kenig, J. Sjöstrand and G. Uhlmann,
Carleman estimates and inverse problems for Dirac operators, Ann. Math., 165 (2007), 567-591.
doi: 10.4007/annals.2007.165.567. |
[20] |
K. Krupchyk, M. Lassas and G. Uhlmannf,
Inverse Boundary value Problems for the Perturbed Polyharmonic Operator, Transactions AMS, 366 (2014), 95-112.
doi: 10.1090/S0002-9947-2013-05713-3. |
[21] |
K. Krupchyk and G. Uhlmann,
Uniqueness in an inverse boundary problem for a magnetic Schrödinger operator with a bounded magnetic potential, Comm. Math. Phys., 327 (2014), 993-1009.
doi: 10.1007/s00220-014-1942-z. |
[22] |
K. Krupchyk and G. Uhlmann,
Inverse boundary problems for polyharmonic operators with unbounded potentials, J. Spectr. Theory, 6 (2016), 145-183.
doi: 10.4171/JST/122. |
[23] |
A. I. Nachman, Inverse scattering at fixed energy, Mathematical physics, X (Leipzig, 1991), 434–441, Springer, Berlin, 1992.
doi: 10.1007/978-3-642-77303-7_48. |
[24] |
W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.
![]() ![]() |
[25] |
G. Nakamura, Z. Sun and G. Uhlmann,
Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field, Math. Ann., 303 (1995), 377-388.
doi: 10.1007/BF01460996. |
[26] |
R. G. Novikov,
A multidimensional inverse spectral problem for the equation $-\Delta\psi+(v(x)-Eu(x))\psi = 0$, Funktsional. Anal. i Prilozhen, 22 (1988), 11-22.
doi: 10.1007/BF01077418. |
[27] |
L. Päivärinta, A. Panchenko and G. Uhlmann,
Complex geometrical optics solutions for Lipschitz conductivities, Rev. Mat. Iberoamericana, 19 (2003), 57-72.
doi: 10.4171/RMI/338. |
[28] |
G. de Rham, Differentiable Manifolds. Forms, Currents, Harmonic Forms, Grundlehren der Mathematischen Wissenschaften, 266. Springer-Verlag, Berlin, 1984.
doi: 10.1007/978-3-642-61752-2. |
[29] |
T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Operators, Walter de Gruyter & Co., Berlin, 1996.
doi: 10.1515/9783110812411. |
[30] |
M. Salo, Inverse problems for nonsmooth first order perturbations of the Laplacian, Ann. Acad. Sci. Fenn. Math. Diss., 139 (2004), 67pp. |
[31] |
M. Salo and L. Tzou,
Carleman estimates and inverse problems for Dirac operators, Math. Ann., 344 (2009), 161-184.
doi: 10.1007/s00208-008-0301-9. |
[32] |
Z. Sun,
An inverse boundary value problem for Schrödinger operators with vector potentials, Trans. Amer. Math. Soc., 338 (1993), 953-969.
doi: 10.2307/2154438. |
[33] |
J. Sylvester and G. Uhlmann,
A global uniqueness theorem for an inverse boundary value problem, Ann. of Math. (2), 125 (1987), 153-169.
doi: 10.2307/1971291. |
[34] |
C. Tolmasky,
Exponentially growing solutions for nonsmooth first-order perturbations of the Laplacian, SIAM J. Math. Anal., 29 (1998), 116-133.
doi: 10.1137/S0036141096301038. |
[35] |
H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Heidelberg: Johann Ambrosius Barth, 1995. |
[36] |
G. Tuhin, An inverse problem on determining up to first order perturbations of a fourth order operator with partial boundary data, Inverse Problems, 31 (2015), 105009, 19pp.
doi: 10.1088/0266-5611/31/10/105009. |
[37] |
G. Tuhin and V. P. Krishnan,
Determination of lower order perturbations of the polyharmonic operator from partial boundary data., Appl. Anal., 95 (2016), 2444-2463.
doi: 10.1080/00036811.2015.1092522. |
show all references
References:
[1] |
R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
![]() ![]() |
[2] |
Y. M. Assylbekov, Inverse problems for the perturbed polyharmonic operator with coefficients in Sobolev spaces with non-positive order, Inverse Problems, 32 (2016), 105009, 22pp.
doi: 10.1088/0266-5611/32/10/105009. |
[3] |
Y. M. Assylbekov and Y. Yang,
Determining the first order perturbation of a polyharmonic operator on admissible manifolds, Journal of Differential Equations, 262 (2017), 590-614.
doi: 10.1016/j.jde.2016.09.039. |
[4] |
A. Behzadan and N. Holst, Multiplication in Sobolev Spaces, Revisited, arXiv: 1512.07379. |
[5] |
R. Brown,
Global uniqueness in the impedance-imaging problem for less regular conductivities, SIAM J. Math. Anal., 27 (1996), 1049-1056.
doi: 10.1137/S0036141094271132. |
[6] |
A. P. Calderon, On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics, Rio de Janeiro, (1980), 65–73. |
[7] |
P. Caro and K. Rogers, Global uniqueness for the Calderón problem with Lipschitz conductivities, Forum of Mathematics, Pi, 4 (2016), e2, 28 pp.
doi: 10.1017/fmp.2015.9. |
[8] |
S. Chanillo,
A problem in electrical prospection and an $n$-dimensional Borg–Levinson theorem, Proc. Amer. Math. Soc., 108 (1990), 761-767.
doi: 10.2307/2047798. |
[9] |
L. D. Faddeev,
Increasing solutions of the Schrödinger equation, Soviet Physics Doklady, 10 (1966), 1033-1035.
|
[10] |
G. Folland, Real Analysis, Modern Techniques and their Applications, John Wiley & Sons, New York, 1984. |
[11] |
F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-12245-3. |
[12] |
A. Greenleaf, M. Lassas and G. Uhlmann,
The Calderón problem for conormal potentials. Ⅰ. Global uniqueness and reconstruction, Comm. Pure Appl. Math., 56 (2003), 328-352.
doi: 10.1002/cpa.10061. |
[13] |
G. Grubb, Distributions and Operators, Graduate Texts in Mathematics, 252. Springer, New York, 2009. |
[14] |
B. Haberman, Unique determination of a magnetic Schrdinger operator with unbounded magnetic potential from boundary data, arXiv: 1512.01580. |
[15] |
B. Haberman and D. Tataru,
Uniqueness in Calderón's problem with Lipschitz conductivities, Duke Math. J., 162 (2013), 496-516.
doi: 10.1215/00127094-2019591. |
[16] |
B. Haberman,
Uniqueness in Calderón's problem for conductivities with unbounded gradient, Comm, Math. Phys., 340 (2015), 639-659.
doi: 10.1007/s00220-015-2460-3. |
[17] |
M. Ikehata,
A special Green's function for the biharmonic operator and its application to an inverse boundary value problem, Comput. Math. Appl., 22 (1991), 53-66.
doi: 10.1016/0898-1221(91)90131-M. |
[18] |
V. Isakov,
Completeness of products of solutions and some inverse problems for PDE, J. Differential Equations, 92 (1991), 305-316.
doi: 10.1016/0022-0396(91)90051-A. |
[19] |
C. Kenig, J. Sjöstrand and G. Uhlmann,
Carleman estimates and inverse problems for Dirac operators, Ann. Math., 165 (2007), 567-591.
doi: 10.4007/annals.2007.165.567. |
[20] |
K. Krupchyk, M. Lassas and G. Uhlmannf,
Inverse Boundary value Problems for the Perturbed Polyharmonic Operator, Transactions AMS, 366 (2014), 95-112.
doi: 10.1090/S0002-9947-2013-05713-3. |
[21] |
K. Krupchyk and G. Uhlmann,
Uniqueness in an inverse boundary problem for a magnetic Schrödinger operator with a bounded magnetic potential, Comm. Math. Phys., 327 (2014), 993-1009.
doi: 10.1007/s00220-014-1942-z. |
[22] |
K. Krupchyk and G. Uhlmann,
Inverse boundary problems for polyharmonic operators with unbounded potentials, J. Spectr. Theory, 6 (2016), 145-183.
doi: 10.4171/JST/122. |
[23] |
A. I. Nachman, Inverse scattering at fixed energy, Mathematical physics, X (Leipzig, 1991), 434–441, Springer, Berlin, 1992.
doi: 10.1007/978-3-642-77303-7_48. |
[24] |
W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.
![]() ![]() |
[25] |
G. Nakamura, Z. Sun and G. Uhlmann,
Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field, Math. Ann., 303 (1995), 377-388.
doi: 10.1007/BF01460996. |
[26] |
R. G. Novikov,
A multidimensional inverse spectral problem for the equation $-\Delta\psi+(v(x)-Eu(x))\psi = 0$, Funktsional. Anal. i Prilozhen, 22 (1988), 11-22.
doi: 10.1007/BF01077418. |
[27] |
L. Päivärinta, A. Panchenko and G. Uhlmann,
Complex geometrical optics solutions for Lipschitz conductivities, Rev. Mat. Iberoamericana, 19 (2003), 57-72.
doi: 10.4171/RMI/338. |
[28] |
G. de Rham, Differentiable Manifolds. Forms, Currents, Harmonic Forms, Grundlehren der Mathematischen Wissenschaften, 266. Springer-Verlag, Berlin, 1984.
doi: 10.1007/978-3-642-61752-2. |
[29] |
T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Operators, Walter de Gruyter & Co., Berlin, 1996.
doi: 10.1515/9783110812411. |
[30] |
M. Salo, Inverse problems for nonsmooth first order perturbations of the Laplacian, Ann. Acad. Sci. Fenn. Math. Diss., 139 (2004), 67pp. |
[31] |
M. Salo and L. Tzou,
Carleman estimates and inverse problems for Dirac operators, Math. Ann., 344 (2009), 161-184.
doi: 10.1007/s00208-008-0301-9. |
[32] |
Z. Sun,
An inverse boundary value problem for Schrödinger operators with vector potentials, Trans. Amer. Math. Soc., 338 (1993), 953-969.
doi: 10.2307/2154438. |
[33] |
J. Sylvester and G. Uhlmann,
A global uniqueness theorem for an inverse boundary value problem, Ann. of Math. (2), 125 (1987), 153-169.
doi: 10.2307/1971291. |
[34] |
C. Tolmasky,
Exponentially growing solutions for nonsmooth first-order perturbations of the Laplacian, SIAM J. Math. Anal., 29 (1998), 116-133.
doi: 10.1137/S0036141096301038. |
[35] |
H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Heidelberg: Johann Ambrosius Barth, 1995. |
[36] |
G. Tuhin, An inverse problem on determining up to first order perturbations of a fourth order operator with partial boundary data, Inverse Problems, 31 (2015), 105009, 19pp.
doi: 10.1088/0266-5611/31/10/105009. |
[37] |
G. Tuhin and V. P. Krishnan,
Determination of lower order perturbations of the polyharmonic operator from partial boundary data., Appl. Anal., 95 (2016), 2444-2463.
doi: 10.1080/00036811.2015.1092522. |
[1] |
R.M. Brown, L.D. Gauthier. Inverse boundary value problems for polyharmonic operators with non-smooth coefficients. Inverse Problems and Imaging, 2022, 16 (4) : 943-966. doi: 10.3934/ipi.2022006 |
[2] |
Johannes Elschner, Guanghui Hu. Uniqueness in inverse transmission scattering problems for multilayered obstacles. Inverse Problems and Imaging, 2011, 5 (4) : 793-813. doi: 10.3934/ipi.2011.5.793 |
[3] |
Md. Ibrahim Kholil, Ziqi Sun. A uniqueness theorem for inverse problems in quasilinear anisotropic media. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022008 |
[4] |
Ru-Yu Lai, Laurel Ohm. Inverse problems for the fractional Laplace equation with lower order nonlinear perturbations. Inverse Problems and Imaging, 2022, 16 (2) : 305-323. doi: 10.3934/ipi.2021051 |
[5] |
Jone Apraiz, Jin Cheng, Anna Doubova, Enrique Fernández-Cara, Masahiro Yamamoto. Uniqueness and numerical reconstruction for inverse problems dealing with interval size search. Inverse Problems and Imaging, 2022, 16 (3) : 569-594. doi: 10.3934/ipi.2021062 |
[6] |
Rafael del Rio, Mikhail Kudryavtsev, Luis O. Silva. Inverse problems for Jacobi operators III: Mass-spring perturbations of semi-infinite systems. Inverse Problems and Imaging, 2012, 6 (4) : 599-621. doi: 10.3934/ipi.2012.6.599 |
[7] |
Xinlin Cao, Huaian Diao, Hongyu Liu, Jun Zou. Two single-measurement uniqueness results for inverse scattering problems within polyhedral geometries. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022023 |
[8] |
Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Dušan D. Repovš. Perturbations of nonlinear eigenvalue problems. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1403-1431. doi: 10.3934/cpaa.2019068 |
[9] |
Mónica Clapp, Marco Squassina. Nonhomogeneous polyharmonic elliptic problems at critical growth with symmetric data. Communications on Pure and Applied Analysis, 2003, 2 (2) : 171-186. doi: 10.3934/cpaa.2003.2.171 |
[10] |
Jingbo Dou, Qianqiao Guo. Solutions for polyharmonic elliptic problems with critical nonlinearities in symmetric domains. Communications on Pure and Applied Analysis, 2012, 11 (2) : 453-464. doi: 10.3934/cpaa.2012.11.453 |
[11] |
Pedro Caro. On an inverse problem in electromagnetism with local data: stability and uniqueness. Inverse Problems and Imaging, 2011, 5 (2) : 297-322. doi: 10.3934/ipi.2011.5.297 |
[12] |
Victor Isakov. On uniqueness in the inverse conductivity problem with local data. Inverse Problems and Imaging, 2007, 1 (1) : 95-105. doi: 10.3934/ipi.2007.1.95 |
[13] |
Germain Gendron. Uniqueness results in the inverse spectral Steklov problem. Inverse Problems and Imaging, 2020, 14 (4) : 631-664. doi: 10.3934/ipi.2020029 |
[14] |
Michael Herty, Giuseppe Visconti. Kinetic methods for inverse problems. Kinetic and Related Models, 2019, 12 (5) : 1109-1130. doi: 10.3934/krm.2019042 |
[15] |
Guanghui Hu, Peijun Li, Xiaodong Liu, Yue Zhao. Inverse source problems in electrodynamics. Inverse Problems and Imaging, 2018, 12 (6) : 1411-1428. doi: 10.3934/ipi.2018059 |
[16] |
Colin Guillarmou, Antônio Sá Barreto. Inverse problems for Einstein manifolds. Inverse Problems and Imaging, 2009, 3 (1) : 1-15. doi: 10.3934/ipi.2009.3.1 |
[17] |
Sergei Avdonin, Pavel Kurasov. Inverse problems for quantum trees. Inverse Problems and Imaging, 2008, 2 (1) : 1-21. doi: 10.3934/ipi.2008.2.1 |
[18] |
Maciej Zworski. A remark on inverse problems for resonances. Inverse Problems and Imaging, 2007, 1 (1) : 225-227. doi: 10.3934/ipi.2007.1.225 |
[19] |
Teemu Tyni, Valery Serov. Scattering problems for perturbations of the multidimensional biharmonic operator. Inverse Problems and Imaging, 2018, 12 (1) : 205-227. doi: 10.3934/ipi.2018008 |
[20] |
Senoussi Guesmia, Abdelmouhcene Sengouga. Some singular perturbations results for semilinear hyperbolic problems. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 567-580. doi: 10.3934/dcdss.2012.5.567 |
2021 Impact Factor: 1.483
Tools
Metrics
Other articles
by authors
[Back to Top]