• Previous Article
    A convergent numerical method for a multi-frequency inverse source problem in inhomogenous media
  • IPI Home
  • This Issue
  • Next Article
    Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy data
October  2019, 13(5): 1045-1066. doi: 10.3934/ipi.2019047

Determining rough first order perturbations of the polyharmonic operator

1. 

Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005, USA

2. 

The Vanguard Group, Malvern, PA 19335, USA

Received  November 2018 Published  July 2019

We show that the knowledge of Dirichlet to Neumann map for rough $ A $ and $ q $ in $ (-\Delta)^m +A\cdot D +q $ for $ m \geq 2 $ for a bounded domain in $ \mathbb{R}^n $, $ n \geq 3 $ determines $ A $ and $ q $ uniquely. This unique identifiability is proved via construction of complex geometrical optics solutions with sufficient decay of remainder terms, by using property of products of functions in Sobolev spaces.

Citation: Yernat Assylbekov, Karthik Iyer. Determining rough first order perturbations of the polyharmonic operator. Inverse Problems and Imaging, 2019, 13 (5) : 1045-1066. doi: 10.3934/ipi.2019047
References:
[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975. 
[2]

Y. M. Assylbekov, Inverse problems for the perturbed polyharmonic operator with coefficients in Sobolev spaces with non-positive order, Inverse Problems, 32 (2016), 105009, 22pp. doi: 10.1088/0266-5611/32/10/105009.

[3]

Y. M. Assylbekov and Y. Yang, Determining the first order perturbation of a polyharmonic operator on admissible manifolds, Journal of Differential Equations, 262 (2017), 590-614.  doi: 10.1016/j.jde.2016.09.039.

[4]

A. Behzadan and N. Holst, Multiplication in Sobolev Spaces, Revisited, arXiv: 1512.07379.

[5]

R. Brown, Global uniqueness in the impedance-imaging problem for less regular conductivities, SIAM J. Math. Anal., 27 (1996), 1049-1056.  doi: 10.1137/S0036141094271132.

[6]

A. P. Calderon, On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics, Rio de Janeiro, (1980), 65–73.

[7]

P. Caro and K. Rogers, Global uniqueness for the Calderón problem with Lipschitz conductivities, Forum of Mathematics, Pi, 4 (2016), e2, 28 pp. doi: 10.1017/fmp.2015.9.

[8]

S. Chanillo, A problem in electrical prospection and an $n$-dimensional Borg–Levinson theorem, Proc. Amer. Math. Soc., 108 (1990), 761-767.  doi: 10.2307/2047798.

[9]

L. D. Faddeev, Increasing solutions of the Schrödinger equation, Soviet Physics Doklady, 10 (1966), 1033-1035. 

[10]

G. Folland, Real Analysis, Modern Techniques and their Applications, John Wiley & Sons, New York, 1984.

[11]

F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-12245-3.

[12]

A. GreenleafM. Lassas and G. Uhlmann, The Calderón problem for conormal potentials. Ⅰ. Global uniqueness and reconstruction, Comm. Pure Appl. Math., 56 (2003), 328-352.  doi: 10.1002/cpa.10061.

[13]

G. Grubb, Distributions and Operators, Graduate Texts in Mathematics, 252. Springer, New York, 2009.

[14]

B. Haberman, Unique determination of a magnetic Schrdinger operator with unbounded magnetic potential from boundary data, arXiv: 1512.01580.

[15]

B. Haberman and D. Tataru, Uniqueness in Calderón's problem with Lipschitz conductivities, Duke Math. J., 162 (2013), 496-516.  doi: 10.1215/00127094-2019591.

[16]

B. Haberman, Uniqueness in Calderón's problem for conductivities with unbounded gradient, Comm, Math. Phys., 340 (2015), 639-659.  doi: 10.1007/s00220-015-2460-3.

[17]

M. Ikehata, A special Green's function for the biharmonic operator and its application to an inverse boundary value problem, Comput. Math. Appl., 22 (1991), 53-66.  doi: 10.1016/0898-1221(91)90131-M.

[18]

V. Isakov, Completeness of products of solutions and some inverse problems for PDE, J. Differential Equations, 92 (1991), 305-316.  doi: 10.1016/0022-0396(91)90051-A.

[19]

C. KenigJ. Sjöstrand and G. Uhlmann, Carleman estimates and inverse problems for Dirac operators, Ann. Math., 165 (2007), 567-591.  doi: 10.4007/annals.2007.165.567.

[20]

K. KrupchykM. Lassas and G. Uhlmannf, Inverse Boundary value Problems for the Perturbed Polyharmonic Operator, Transactions AMS, 366 (2014), 95-112.  doi: 10.1090/S0002-9947-2013-05713-3.

[21]

K. Krupchyk and G. Uhlmann, Uniqueness in an inverse boundary problem for a magnetic Schrödinger operator with a bounded magnetic potential, Comm. Math. Phys., 327 (2014), 993-1009.  doi: 10.1007/s00220-014-1942-z.

[22]

K. Krupchyk and G. Uhlmann, Inverse boundary problems for polyharmonic operators with unbounded potentials, J. Spectr. Theory, 6 (2016), 145-183.  doi: 10.4171/JST/122.

[23]

A. I. Nachman, Inverse scattering at fixed energy, Mathematical physics, X (Leipzig, 1991), 434–441, Springer, Berlin, 1992. doi: 10.1007/978-3-642-77303-7_48.

[24] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000. 
[25]

G. NakamuraZ. Sun and G. Uhlmann, Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field, Math. Ann., 303 (1995), 377-388.  doi: 10.1007/BF01460996.

[26]

R. G. Novikov, A multidimensional inverse spectral problem for the equation $-\Delta\psi+(v(x)-Eu(x))\psi = 0$, Funktsional. Anal. i Prilozhen, 22 (1988), 11-22.  doi: 10.1007/BF01077418.

[27]

L. PäivärintaA. Panchenko and G. Uhlmann, Complex geometrical optics solutions for Lipschitz conductivities, Rev. Mat. Iberoamericana, 19 (2003), 57-72.  doi: 10.4171/RMI/338.

[28]

G. de Rham, Differentiable Manifolds. Forms, Currents, Harmonic Forms, Grundlehren der Mathematischen Wissenschaften, 266. Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-61752-2.

[29]

T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Operators, Walter de Gruyter & Co., Berlin, 1996. doi: 10.1515/9783110812411.

[30]

M. Salo, Inverse problems for nonsmooth first order perturbations of the Laplacian, Ann. Acad. Sci. Fenn. Math. Diss., 139 (2004), 67pp.

[31]

M. Salo and L. Tzou, Carleman estimates and inverse problems for Dirac operators, Math. Ann., 344 (2009), 161-184.  doi: 10.1007/s00208-008-0301-9.

[32]

Z. Sun, An inverse boundary value problem for Schrödinger operators with vector potentials, Trans. Amer. Math. Soc., 338 (1993), 953-969.  doi: 10.2307/2154438.

[33]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math. (2), 125 (1987), 153-169.  doi: 10.2307/1971291.

[34]

C. Tolmasky, Exponentially growing solutions for nonsmooth first-order perturbations of the Laplacian, SIAM J. Math. Anal., 29 (1998), 116-133.  doi: 10.1137/S0036141096301038.

[35]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Heidelberg: Johann Ambrosius Barth, 1995.

[36]

G. Tuhin, An inverse problem on determining up to first order perturbations of a fourth order operator with partial boundary data, Inverse Problems, 31 (2015), 105009, 19pp. doi: 10.1088/0266-5611/31/10/105009.

[37]

G. Tuhin and V. P. Krishnan, Determination of lower order perturbations of the polyharmonic operator from partial boundary data., Appl. Anal., 95 (2016), 2444-2463.  doi: 10.1080/00036811.2015.1092522.

show all references

References:
[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975. 
[2]

Y. M. Assylbekov, Inverse problems for the perturbed polyharmonic operator with coefficients in Sobolev spaces with non-positive order, Inverse Problems, 32 (2016), 105009, 22pp. doi: 10.1088/0266-5611/32/10/105009.

[3]

Y. M. Assylbekov and Y. Yang, Determining the first order perturbation of a polyharmonic operator on admissible manifolds, Journal of Differential Equations, 262 (2017), 590-614.  doi: 10.1016/j.jde.2016.09.039.

[4]

A. Behzadan and N. Holst, Multiplication in Sobolev Spaces, Revisited, arXiv: 1512.07379.

[5]

R. Brown, Global uniqueness in the impedance-imaging problem for less regular conductivities, SIAM J. Math. Anal., 27 (1996), 1049-1056.  doi: 10.1137/S0036141094271132.

[6]

A. P. Calderon, On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics, Rio de Janeiro, (1980), 65–73.

[7]

P. Caro and K. Rogers, Global uniqueness for the Calderón problem with Lipschitz conductivities, Forum of Mathematics, Pi, 4 (2016), e2, 28 pp. doi: 10.1017/fmp.2015.9.

[8]

S. Chanillo, A problem in electrical prospection and an $n$-dimensional Borg–Levinson theorem, Proc. Amer. Math. Soc., 108 (1990), 761-767.  doi: 10.2307/2047798.

[9]

L. D. Faddeev, Increasing solutions of the Schrödinger equation, Soviet Physics Doklady, 10 (1966), 1033-1035. 

[10]

G. Folland, Real Analysis, Modern Techniques and their Applications, John Wiley & Sons, New York, 1984.

[11]

F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-12245-3.

[12]

A. GreenleafM. Lassas and G. Uhlmann, The Calderón problem for conormal potentials. Ⅰ. Global uniqueness and reconstruction, Comm. Pure Appl. Math., 56 (2003), 328-352.  doi: 10.1002/cpa.10061.

[13]

G. Grubb, Distributions and Operators, Graduate Texts in Mathematics, 252. Springer, New York, 2009.

[14]

B. Haberman, Unique determination of a magnetic Schrdinger operator with unbounded magnetic potential from boundary data, arXiv: 1512.01580.

[15]

B. Haberman and D. Tataru, Uniqueness in Calderón's problem with Lipschitz conductivities, Duke Math. J., 162 (2013), 496-516.  doi: 10.1215/00127094-2019591.

[16]

B. Haberman, Uniqueness in Calderón's problem for conductivities with unbounded gradient, Comm, Math. Phys., 340 (2015), 639-659.  doi: 10.1007/s00220-015-2460-3.

[17]

M. Ikehata, A special Green's function for the biharmonic operator and its application to an inverse boundary value problem, Comput. Math. Appl., 22 (1991), 53-66.  doi: 10.1016/0898-1221(91)90131-M.

[18]

V. Isakov, Completeness of products of solutions and some inverse problems for PDE, J. Differential Equations, 92 (1991), 305-316.  doi: 10.1016/0022-0396(91)90051-A.

[19]

C. KenigJ. Sjöstrand and G. Uhlmann, Carleman estimates and inverse problems for Dirac operators, Ann. Math., 165 (2007), 567-591.  doi: 10.4007/annals.2007.165.567.

[20]

K. KrupchykM. Lassas and G. Uhlmannf, Inverse Boundary value Problems for the Perturbed Polyharmonic Operator, Transactions AMS, 366 (2014), 95-112.  doi: 10.1090/S0002-9947-2013-05713-3.

[21]

K. Krupchyk and G. Uhlmann, Uniqueness in an inverse boundary problem for a magnetic Schrödinger operator with a bounded magnetic potential, Comm. Math. Phys., 327 (2014), 993-1009.  doi: 10.1007/s00220-014-1942-z.

[22]

K. Krupchyk and G. Uhlmann, Inverse boundary problems for polyharmonic operators with unbounded potentials, J. Spectr. Theory, 6 (2016), 145-183.  doi: 10.4171/JST/122.

[23]

A. I. Nachman, Inverse scattering at fixed energy, Mathematical physics, X (Leipzig, 1991), 434–441, Springer, Berlin, 1992. doi: 10.1007/978-3-642-77303-7_48.

[24] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000. 
[25]

G. NakamuraZ. Sun and G. Uhlmann, Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field, Math. Ann., 303 (1995), 377-388.  doi: 10.1007/BF01460996.

[26]

R. G. Novikov, A multidimensional inverse spectral problem for the equation $-\Delta\psi+(v(x)-Eu(x))\psi = 0$, Funktsional. Anal. i Prilozhen, 22 (1988), 11-22.  doi: 10.1007/BF01077418.

[27]

L. PäivärintaA. Panchenko and G. Uhlmann, Complex geometrical optics solutions for Lipschitz conductivities, Rev. Mat. Iberoamericana, 19 (2003), 57-72.  doi: 10.4171/RMI/338.

[28]

G. de Rham, Differentiable Manifolds. Forms, Currents, Harmonic Forms, Grundlehren der Mathematischen Wissenschaften, 266. Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-61752-2.

[29]

T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Operators, Walter de Gruyter & Co., Berlin, 1996. doi: 10.1515/9783110812411.

[30]

M. Salo, Inverse problems for nonsmooth first order perturbations of the Laplacian, Ann. Acad. Sci. Fenn. Math. Diss., 139 (2004), 67pp.

[31]

M. Salo and L. Tzou, Carleman estimates and inverse problems for Dirac operators, Math. Ann., 344 (2009), 161-184.  doi: 10.1007/s00208-008-0301-9.

[32]

Z. Sun, An inverse boundary value problem for Schrödinger operators with vector potentials, Trans. Amer. Math. Soc., 338 (1993), 953-969.  doi: 10.2307/2154438.

[33]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math. (2), 125 (1987), 153-169.  doi: 10.2307/1971291.

[34]

C. Tolmasky, Exponentially growing solutions for nonsmooth first-order perturbations of the Laplacian, SIAM J. Math. Anal., 29 (1998), 116-133.  doi: 10.1137/S0036141096301038.

[35]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Heidelberg: Johann Ambrosius Barth, 1995.

[36]

G. Tuhin, An inverse problem on determining up to first order perturbations of a fourth order operator with partial boundary data, Inverse Problems, 31 (2015), 105009, 19pp. doi: 10.1088/0266-5611/31/10/105009.

[37]

G. Tuhin and V. P. Krishnan, Determination of lower order perturbations of the polyharmonic operator from partial boundary data., Appl. Anal., 95 (2016), 2444-2463.  doi: 10.1080/00036811.2015.1092522.

[1]

R.M. Brown, L.D. Gauthier. Inverse boundary value problems for polyharmonic operators with non-smooth coefficients. Inverse Problems and Imaging, 2022, 16 (4) : 943-966. doi: 10.3934/ipi.2022006

[2]

Johannes Elschner, Guanghui Hu. Uniqueness in inverse transmission scattering problems for multilayered obstacles. Inverse Problems and Imaging, 2011, 5 (4) : 793-813. doi: 10.3934/ipi.2011.5.793

[3]

Md. Ibrahim Kholil, Ziqi Sun. A uniqueness theorem for inverse problems in quasilinear anisotropic media. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022008

[4]

Ru-Yu Lai, Laurel Ohm. Inverse problems for the fractional Laplace equation with lower order nonlinear perturbations. Inverse Problems and Imaging, 2022, 16 (2) : 305-323. doi: 10.3934/ipi.2021051

[5]

Jone Apraiz, Jin Cheng, Anna Doubova, Enrique Fernández-Cara, Masahiro Yamamoto. Uniqueness and numerical reconstruction for inverse problems dealing with interval size search. Inverse Problems and Imaging, 2022, 16 (3) : 569-594. doi: 10.3934/ipi.2021062

[6]

Rafael del Rio, Mikhail Kudryavtsev, Luis O. Silva. Inverse problems for Jacobi operators III: Mass-spring perturbations of semi-infinite systems. Inverse Problems and Imaging, 2012, 6 (4) : 599-621. doi: 10.3934/ipi.2012.6.599

[7]

Xinlin Cao, Huaian Diao, Hongyu Liu, Jun Zou. Two single-measurement uniqueness results for inverse scattering problems within polyhedral geometries. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022023

[8]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Dušan D. Repovš. Perturbations of nonlinear eigenvalue problems. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1403-1431. doi: 10.3934/cpaa.2019068

[9]

Mónica Clapp, Marco Squassina. Nonhomogeneous polyharmonic elliptic problems at critical growth with symmetric data. Communications on Pure and Applied Analysis, 2003, 2 (2) : 171-186. doi: 10.3934/cpaa.2003.2.171

[10]

Jingbo Dou, Qianqiao Guo. Solutions for polyharmonic elliptic problems with critical nonlinearities in symmetric domains. Communications on Pure and Applied Analysis, 2012, 11 (2) : 453-464. doi: 10.3934/cpaa.2012.11.453

[11]

Pedro Caro. On an inverse problem in electromagnetism with local data: stability and uniqueness. Inverse Problems and Imaging, 2011, 5 (2) : 297-322. doi: 10.3934/ipi.2011.5.297

[12]

Victor Isakov. On uniqueness in the inverse conductivity problem with local data. Inverse Problems and Imaging, 2007, 1 (1) : 95-105. doi: 10.3934/ipi.2007.1.95

[13]

Germain Gendron. Uniqueness results in the inverse spectral Steklov problem. Inverse Problems and Imaging, 2020, 14 (4) : 631-664. doi: 10.3934/ipi.2020029

[14]

Michael Herty, Giuseppe Visconti. Kinetic methods for inverse problems. Kinetic and Related Models, 2019, 12 (5) : 1109-1130. doi: 10.3934/krm.2019042

[15]

Guanghui Hu, Peijun Li, Xiaodong Liu, Yue Zhao. Inverse source problems in electrodynamics. Inverse Problems and Imaging, 2018, 12 (6) : 1411-1428. doi: 10.3934/ipi.2018059

[16]

Colin Guillarmou, Antônio Sá Barreto. Inverse problems for Einstein manifolds. Inverse Problems and Imaging, 2009, 3 (1) : 1-15. doi: 10.3934/ipi.2009.3.1

[17]

Sergei Avdonin, Pavel Kurasov. Inverse problems for quantum trees. Inverse Problems and Imaging, 2008, 2 (1) : 1-21. doi: 10.3934/ipi.2008.2.1

[18]

Maciej Zworski. A remark on inverse problems for resonances. Inverse Problems and Imaging, 2007, 1 (1) : 225-227. doi: 10.3934/ipi.2007.1.225

[19]

Teemu Tyni, Valery Serov. Scattering problems for perturbations of the multidimensional biharmonic operator. Inverse Problems and Imaging, 2018, 12 (1) : 205-227. doi: 10.3934/ipi.2018008

[20]

Senoussi Guesmia, Abdelmouhcene Sengouga. Some singular perturbations results for semilinear hyperbolic problems. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 567-580. doi: 10.3934/dcdss.2012.5.567

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (196)
  • HTML views (201)
  • Cited by (0)

Other articles
by authors

[Back to Top]