[1]
|
A. Asaduzzaman, A. Martinez and A. Sepehri, A time-efficient image processing algorithm for multicore/manycore parallel computing, Southeastcon, IEEE, (2015).
doi: 10.1109/SECON.2015.7132924.
|
[2]
|
G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, Applied Mathematical Sciences, 147. Springer, New York, 2006.
|
[3]
|
S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout, W. Gropp, B. Smith, D. Karpeyev, D. Kaushik and et al., PETSc Web page, (2019), https://www.mcs.anl.gov/petsc.
|
[4]
|
M. Basu, Gaussian-based edge-detection methods-a survey, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 32 (2002), 252-260.
doi: 10.1109/TSMCC.2002.804448.
|
[5]
|
P. Blomgren, T. F. Chan, P. Mulet, L. Vese and W. L. Wan, Variational PDE models and methods for image processing, Numerical analysis, Chapman and Hall CRC Research Notes in Mathematics, Boca Raton, FL, 420 (2000), 43-67.
|
[6]
|
A. Buades, B. Coll and J. M. Morel, Image denoising methods, a new nonlocal principle, SIAM Review, 52 (2010), 113-147.
doi: 10.1137/090773908.
|
[7]
|
X.-C. Cai, M. Dryja and M. Sarkis, Restricted additive Schwarz preconditioners with harmonic overlap for symmetric positive definite linear systems, SIAM Journal on Numerical Analysis, 41 (2003), 1209-1231.
doi: 10.1137/S0036142901389621.
|
[8]
|
X.-C. Cai, W. D. Gropp, D. E. Keyes, R. G. Melvin and D. P. Young, Parallel Newton-Krylov-Schwarz algorithms for the transonic full potential equation, SIAM Journal on Scientific Computing, 19 (1998), 246-265.
doi: 10.1137/S1064827596304046.
|
[9]
|
A. Chambolle and P.-L. Lions, Image recovery via total variation minimization and related problems, Numerische Mathematik, 76 (1997), 167-188.
doi: 10.1007/s002110050258.
|
[10]
|
T. F. Chan and J. H. Shen, Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005.
doi: 10.1137/1.9780898717877.
|
[11]
|
T. F. Chan, H. M. Zhou and R. H. Chan, Continuation Method for Total Variation Denoising Problems, Department of Mathematics, University of California, Los Angeles, 1995.
|
[12]
|
H. B. Chang, X.-C. Tai, L.-L. Wang and D. P. Yang, Convergence rate of overlapping domain decomposition methods for the Rudin-Osher-Fatemi model based on a dual formulation, SIAM Journal on Imaging Sciences, 8 (2015), 564-591.
doi: 10.1137/140965016.
|
[13]
|
H. B. Chang, X. Q. Zhang, X.-C. Tai and D. P. Yang, Domain decomposition methods for nonlocal total variation image restoration, Journal of Scientific Computing, 60 (2014), 79-100.
doi: 10.1007/s10915-013-9786-9.
|
[14]
|
R. L. Chen and X.-C. Cai, Parallel one-shot Lagrange-Newton-Krylov-Schwarz algorithms for shape optimization of steady incompressible flows, SIAM Journal on Scientific Computing, 34 (2012), B584-B605.
doi: 10.1137/110830769.
|
[15]
|
R. L. Chen, Y. Q. Wu, Z. Z. Yan, Y. B. Zhao and X.-C. Cai, A parallel domain decomposition method for 3D unsteady incompressible flows at high Reynolds number, Journal of Scientific Computing, 58 (2014), 275-289.
doi: 10.1007/s10915-013-9732-x.
|
[16]
|
D. L. Collins, A. P. Zijdenbos, V. Kollokian, J. G. Sled, N. J. Kabani, C. J. Holmes and A. C. Evans, Design and construction of a realistic digital brain phantom, IEEE Transactions on Medical Imaging, 17 (1998), 463-468.
doi: 10.1109/42.712135.
|
[17]
|
P. Coupé, P. Yger, S. Prima, P. Hellier, C. Kervrann and C. Barillot, An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images, IEEE Transactions on Medical Imaging, 27 (2008), 425-441.
|
[18]
|
X. M. Deng, X.-C. Cai and J. Zou, A parallel space-time domain decomposition method for unsteady source inversion problems, Inverse Problems and Imaging, 9 (2015), 1069-1091.
doi: 10.3934/ipi.2015.9.1069.
|
[19]
|
D. L. Donoho and I. M. Johnstone, Adapting to unknown smoothness via wavelet shrinkage, Journal of the American Statistical Association, 90 (1995), 1200-1224.
doi: 10.1080/01621459.1995.10476626.
|
[20]
|
A. Eklund, P. Dufort, D. Forsberg and S. M. LaConte, Medical image processing on the GPU-past, Present and Future, Medical Image Analysis, 17 (2013), 1073-1094.
|
[21]
|
L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998.
|
[22]
|
M. Fornasier, A. Langer and C.-B. Schönlieb, A convergent overlapping domain decomposition method for total variation minimization, Numerische Mathematik, 116 (2010), 645-685.
doi: 10.1007/s00211-010-0314-7.
|
[23]
|
M. Fornasier and C.-B. Schönlieb, Subspace correction methods for total variation and $L_1$-minimization, SIAM Journal on Numerical Analysis, 47 (2009), 3397-3428.
doi: 10.1137/070710779.
|
[24]
|
C. Gerhardt, Global regularity of the solutions to the capillarity problem, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 3 (1976), 157-175.
|
[25]
|
M. Hintermüller and A. Langer, Non-overlapping domain decomposition methods for dual total variation based image denoising, Journal of Scientific Computing, 62 (2015), 456-481.
doi: 10.1007/s10915-014-9863-8.
|
[26]
|
M. Hintermüller and G. Stadler, An infeasible primal-dual algorithm for total bounded variation-based inf-convolution-type image restoration, SIAM Journal on Scientific Computing, 28 (2006), 1-23.
doi: 10.1137/040613263.
|
[27]
|
T. Kohlberger, Variational Domain Decomposition For Parallel Image Processing, PhD thesis, Universitat Mannheim, 2007.
|
[28]
|
F. Kong and X.-C. Cai, A scalable nonlinear fluid-structure interaction solver based on a Schwarz preconditioner with isogeometric unstructured coarse spaces in 3D, Journal of Computational Physics, 340 (2017), 498-518.
doi: 10.1016/j.jcp.2017.03.043.
|
[29]
|
C.-O. Lee and C. M. Nam, Primal domain decomposition methods for the total variation minimization, based on dual decomposition, SIAM Journal on Scientific Computing, 39 (2017), B403-B423.
doi: 10.1137/15M1049919.
|
[30]
|
F. Malgouyres, Minimizing the total variation under a general convex constraint for image restoration, IEEE Transactions on Image Processing, 11 (2002), 1450-1456.
doi: 10.1109/TIP.2002.806241.
|
[31]
|
S. Osher, M. Burger, D. Goldfarb, J. J. Xu and W. T. Yin, An iterative regularization method for total variation-based image restoration, Multiscale Model. Simul., 4 (2005), 460-489.
doi: 10.1137/040605412.
|
[32]
|
G. Pratx and L. Xing, GPU computing in medical physics: A review, Medical Physics, 38 (2011), 2685-2697.
|
[33]
|
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F.
|
[34]
|
Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2003.
doi: 10.1137/1.9780898718003.
|
[35]
|
R. Shams, P. Sadeghi, R. A. Kennedy and R. I. Hartley, A survey of medical image registration on multicore and the GPU, IEEE Signal Processing Magazine, 27 (2010), 50-60.
doi: 10.1109/MSP.2009.935387.
|
[36]
|
J. Spruck, On the existence of a capillary surface with prescribed contact angle, Communications on Pure and Applied Mathematics, 28 (1975), 189-200.
doi: 10.1002/cpa.3160280202.
|
[37]
|
N. Ural'tseva, Solvability of the problem of capillaries, Vestn. Leningr. Univ, (1973), 54-64.
|
[38]
|
L. A. Vese and T. F. Chan, A multiphase level set framework for image segmentation using the Mumford and Shah model, International Journal of Computer Vision, 50 (2002), 271-293.
|
[39]
|
C. R. Vogel and M. E. Oman, Iterative methods for total variation denoising, SIAM Journal on Scientific Computing, 17 (1996), 227-238.
doi: 10.1137/0917016.
|
[40]
|
J. Xu, X.-C. Tai and L.-L. Wang, A two-level domain decomposition method for image restoration, Inverse Problem and Imaging, 4 (2010), 523-545.
doi: 10.3934/ipi.2010.4.523.
|