April  2020, 14(2): 339-361. doi: 10.3934/ipi.2020015

Non-local blind hyperspectral image super-resolution via 4d sparse tensor factorization and low-rank

1. 

Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

2. 

Department of Mathematics, Case Western Reserve University, Cleveland, OH, 44106, USA

* Corresponding author: Weihong Guo

Received  June 2019 Revised  October 2019 Published  February 2020

Hyperspectral image (HSI) super-resolution is a technique to improve the spatial resolution of a HSI for better visual perception and down stream applications. This is a very ill-posed inverse problem and is often solved by fusing the low-resolution (LR) HSI with a high-resolution (HR) multispectral image (MSI). It is more challenging for blind HSI super-resolution, i.e., when the spatial degradation operators are completely unknown. In this paper, we propose a novel sparse tensor factorization model for the task of blind HSI super-resolution using the spatial non-local self-similarity and spectral global correlation of HSIs. Image clustering method is employed to collect some similar 3D cubes of HSIs which can be formed as some 4D image clusters with high correlation. We conduct cluster wise computation to not only save computation time but also to introduce a non-local regularity originated from the redundancy of cubes. By using the sparsity of tensor decomposition and the low-rank in non-local self-similarity direction underlying 4D similar clusters, we design a sparse tensor regularization term, which preserves the spatial-spectral structural correlation of HSIs. In addition, we present a proximal alternating direction method of multipliers (ADMM) based algorithm to efficiently solve the proposed model. Numerical experiments demonstrate that the proposed model outperforms many state-of-the-art HSI super-resolution methods.

Citation: Wei Wan, Weihong Guo, Jun Liu, Haiyang Huang. Non-local blind hyperspectral image super-resolution via 4d sparse tensor factorization and low-rank. Inverse Problems and Imaging, 2020, 14 (2) : 339-361. doi: 10.3934/ipi.2020015
References:
[1]

N. Akhtar, F. Shafait and A. Mian, Bayesian sparse representation for hyperspectral image super resolution, IEEE Computer Vision and Pattern Recognition (CVPR), (2015), 3631-3640. doi: 10.1109/CVPR.2015.7298986.

[2]

J. M. Bioucas-DiasA. PlazaG. Camps-VallsP. ScheundersN. Nasrabadi and J. Chanussot, Hyperspectral remote sensing data analysis and future challenges, IEEE Geoscience and Remote Sensing Magazine, 1 (2013), 6-36.  doi: 10.1109/MGRS.2013.2244672.

[3]

J. M. Bioucas-Dias and A. Plaza, Hyperspectral unmixing: Geometrical, statistical, and sparse regression-based approaches, Image and Signal Processing for Remote Sensing XVI, (2010), 354-379.

[4]

Y. Chang, L. Yan, H. Fang, S. Zhong and Z. Zhang, Weighted Low-Rank Tensor Recovery for Hyperspectral Image Restoration, ARXIV, 2017.

[5]

C. F. Caiafa and A. Cichocki, Computing sparse representations of multidimensional signals using kronecker bases, Neural Computation, 25 (2013), 186-220.  doi: 10.1162/NECO_a_00385.

[6]

W. DongF. FuG. ShiX. CaoJ. WuG. Li and X. Li, Hyperspectral image super-resolution via non-negative structured sparse representation, IEEE Transactions on Image Processing, 25 (2016), 2337-2352.  doi: 10.1109/TIP.2016.2542360.

[7]

R. Dian, L. Fang and S. Li, Hyperspectral image super-resolution via non-local sparse tensor factorization, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017). doi: 10.1109/CVPR.2017.411.

[8]

F. Dell''AcquaP. GambaA. FerrariJ. A. PalmasonJ. A. Benediktsson and K. Arnason, Exploiting spectral and spatial information in hyperspectral urban data with high resolution, IEEE Geoscience and Remote Sensing Letters, 1 (2004), 322-326. 

[9]

H. FanY. ChenY. GuoH. Zhang and G. Kuang, Hyperspectral image restoration using low-rank tensor recovery, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10 (2017), 4589-4604.  doi: 10.1109/JSTARS.2017.2714338.

[10]

A. F. H. Goetz, Three decades of hyperspectral remote sensing of the earth: A personal view, Remote Sensing of Environment, 113 (2009), S5-S16. doi: 10.1016/j.rse.2007.12.014.

[11]

C. Jia and Y. Fu, Low-rank tensor subspace learning for RGB-D action recognition, IEEE Transactions on Image Processing, 25 (2016), 4641-4652.  doi: 10.1109/TIP.2016.2589320.

[12]

C. JiaM. Shao and Y. Fu, Sparse canonical temporal alignment with deep tensor decomposition for action recognition, IEEE Transactions on Image Processing, 26 (2017), 738-750.  doi: 10.1109/TIP.2016.2621664.

[13]

R. Kawakami, J. Wright, Y. W. Tai and Y. Matsushita, High-resolution hyperspectral imaging via matrix factorization, Computer Vision and Pattern Recognition (CVPR), (2011), 2329-2336. doi: 10.1109/CVPR.2011.5995457.

[14]

C. I. KanatsoulisX. FuN. D. Sidiropoulos and W. K. Ma, Hyperspectral super-resolution: A coupled tensor factorization approach, IEEE Transactions on Signal Processing, 66 (2018), 6503-6517.  doi: 10.1109/TSP.2018.2876362.

[15]

T. G. Kolda and B. W. Bader, Tensor decompositions and applications, Siam Review, 51 (2009), 455-500.  doi: 10.1137/07070111X.

[16]

W. LiG. WuF. Zhang and Q. Du, Hyperspectral image classification using deep pixel-pair features, IEEE Transactions on Geoscience and Remote Sensing, 55 (2016), 844-853. 

[17]

X. LiuW. XiaB. Wang and L. Zhang, An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data, IEEE Transactions on Geoscience and Remote Sensing, 49 (2011), 757-772.  doi: 10.1109/TGRS.2010.2068053.

[18]

S. LiR. DianL. Fang and J. M. Bioucas-Dias, Fusing hyperspectral and multispectral images via coupled sparse tensor factorization, IEEE Transactions on Image Processing, 27 (2018), 4118-4130.  doi: 10.1109/TIP.2018.2836307.

[19]

M. J. Montag and H. Stephani, Hyperspectral unmixing from incomplete and noisy data, Journal of Imaging, 2 (2016), p7. doi: 10.3390/jimaging2010007.

[20]

J. MaH. ZhouJ. ZhaoY. CaoJ. Jiang and J. Tian, Robust feature matching for remote sensing image registration via locally linear transforming, IEEE Transactions on Geoscience and Remote Sensing, 53 (2015), 6469-6481.  doi: 10.1109/TGRS.2015.2441954.

[21]

H. V. Nguyen, A. Banerjee and R. Chellappa, Tracking via object reflectance using a hyperspectral video camera, IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, (2010). doi: 10.1109/CVPRW.2010.5543780.

[22]

Y. Peng, D. Meng, Z. Xu, C. Cao, Y. Yang and B. Zhang, Decomposable nonlocal tensor dictionary learning for multispectral image denoising, IEEE Conference on Computer Vision and Pattern Recognition, (2014). doi: 10.1109/CVPR.2014.377.

[23]

Y. QianF. XiongS. ZengJ. Zhou and Y. Y. Tang, Matrix-vector nonnegative tensor factorization for blind unmixing of hyperspectral imagery, IEEE Transactions on Geoscience and Remote Sensing, 55 (2017), 1776-1792. 

[24]

M. SimoesJ. M. Bioucas-DiasL. B. Almeida and J. Chanussot, A convex formulation for hyperspectral image superresolution via subspace-based regularization, IEEE Transactions on Geoscience and Remote Sensing, 53 (2014), 3373-3388.  doi: 10.1109/TGRS.2014.2375320.

[25]

S. SoltaniM. E. Kilmer and P. C. Hansen, A tensor-based dictionary learning approach to tomographic image reconstruction, BIT Numerical Mathematics, 56 (2016), 1425-1454.  doi: 10.1007/s10543-016-0607-z.

[26]

Y. TarabalkaJ. Chanussot and J. A. Benediktsson, Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers, IEEE Transactions on Systems, Man, and Cybernetics, 40 (2010), 1267-1279.  doi: 10.1109/TSMCB.2009.2037132.

[27]

X. C. Tai and C. Wu, Augmented Lagrangian method, dual methods and split Bregman iteration for ROF model, International Conference on Scale Space and Variational Methods in Computer Vision, (2009), 502-513.

[28]

M. UzairA. Mahmood and A. Mian, Hyperspectral face recognition using 3D-DCT and partial least squares, BMVC, 10 (2013), 1-57.  doi: 10.5244/C.27.57.

[29]

M. UzairA. Mahmood and A. Mian, Hyperspectral face recognition with spatiospectral information fusion and PLS regression, IEEE Transactions on Image Processing, 24 (2015), 1127-1137.  doi: 10.1109/TIP.2015.2393057.

[30]

G. VaneR. O. GreenT. G. ChrienH. T. EnmarkE. G. Hansen and W. M. Porter, The airborne visible/infrared imaging spectrometer (AVIRIS), Remote Sensing of Environment, 44 (1993), 127-143.  doi: 10.1016/0034-4257(93)90012-M.

[31]

E. Wycoff, T. H. Chan, K. Jia, W. K. Ma and Y. Ma, A non-negative sparse promoting algorithm for high resolution hyperspectral imaging, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (2013), 1409-1413. doi: 10.1109/ICASSP.2013.6637883.

[32]

Q. WeiJ. M. Bioucas-DiasN. Dobigeon and J. Y. Tourneret, Hyperspectral and multispectral image fusion based on a sparse representation, IEEE Transactions on Geoscience and Remote Sensing, 53 (2015), 3658-3668.  doi: 10.1109/TGRS.2014.2381272.

[33]

Q. WeiN. Dobigeon and J. Y. Tourneret, Fast fusion of multi-band images based on solving a Sylvester equation, IEEE Transactions on Image Processing, 24 (2015), 4109-4121.  doi: 10.1109/TIP.2015.2458572.

[34]

W. WanJ. Liu and H. Huang, Local block operators and TV regularization based image inpainting, Inverse Problems and Imaging, 12 (2018), 1389-1410.  doi: 10.3934/ipi.2018058.

[35]

Q. Xie, Q. Zhao, D. Meng, Z. Xu, S. Gu, W. Zuo and L. Zhang, Multispectral images denoising by intrinsic tensor sparsity regularization, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016). doi: 10.1109/CVPR.2016.187.

[36]

Q. XieQ. ZhaoD. Meng and Z. Xu, Kronecker-basis-representation based tensor sparsity and its applications to tensor recovery, IEEE Transactions on Pattern Analysis and Machine Intelligence, 40 (2018), 1888-1902.  doi: 10.1109/TPAMI.2017.2734888.

[37]

N. YokoyaT. Yairi and A. Iwasaki, Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion, IEEE Transactions on Geoscience and Remote Sensing, 50 (2012), 528-537.  doi: 10.1109/TGRS.2011.2161320.

[38]

F. YasumaT. MitsunagaD. Iso and S. K. Nayar, Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum, IEEE Transactions on Image Processing, 19 (2010), 2241-2253.  doi: 10.1109/TIP.2010.2046811.

[39]

L. ZhangW. WeiC. BaiY. Gao and Y. Zhang, Exploiting clustering manifold structure for hyperspectral imagery super-resolution, IEEE Transactions on Image Processing, 27 (2018), 5969-5982.  doi: 10.1109/TIP.2018.2862629.

[40]

Z. ZhangE. PasolliM. M. Crawford and J. C. Tilton, An active learning framework for hyperspectral image classification using hierarchical segmentation, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9 (2016), 640-654.  doi: 10.1109/JSTARS.2015.2493887.

[41]

H. ZhangJ. LiY. Huang and L. Zhang, A nonlocal weighted joint sparse representation classification method for hyperspectral imagery, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7 (2014), 2056-2065. 

[42]

H. ZhangH. ZhaiL. Zhang and P. Li, Spectral-spatial sparse subspace clustering for hyperspectral remote sensing images, IEEE Transactions on Geoscience and Remote Sensing, 54 (2016), 3672-3684.  doi: 10.1109/TGRS.2016.2524557.

show all references

References:
[1]

N. Akhtar, F. Shafait and A. Mian, Bayesian sparse representation for hyperspectral image super resolution, IEEE Computer Vision and Pattern Recognition (CVPR), (2015), 3631-3640. doi: 10.1109/CVPR.2015.7298986.

[2]

J. M. Bioucas-DiasA. PlazaG. Camps-VallsP. ScheundersN. Nasrabadi and J. Chanussot, Hyperspectral remote sensing data analysis and future challenges, IEEE Geoscience and Remote Sensing Magazine, 1 (2013), 6-36.  doi: 10.1109/MGRS.2013.2244672.

[3]

J. M. Bioucas-Dias and A. Plaza, Hyperspectral unmixing: Geometrical, statistical, and sparse regression-based approaches, Image and Signal Processing for Remote Sensing XVI, (2010), 354-379.

[4]

Y. Chang, L. Yan, H. Fang, S. Zhong and Z. Zhang, Weighted Low-Rank Tensor Recovery for Hyperspectral Image Restoration, ARXIV, 2017.

[5]

C. F. Caiafa and A. Cichocki, Computing sparse representations of multidimensional signals using kronecker bases, Neural Computation, 25 (2013), 186-220.  doi: 10.1162/NECO_a_00385.

[6]

W. DongF. FuG. ShiX. CaoJ. WuG. Li and X. Li, Hyperspectral image super-resolution via non-negative structured sparse representation, IEEE Transactions on Image Processing, 25 (2016), 2337-2352.  doi: 10.1109/TIP.2016.2542360.

[7]

R. Dian, L. Fang and S. Li, Hyperspectral image super-resolution via non-local sparse tensor factorization, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017). doi: 10.1109/CVPR.2017.411.

[8]

F. Dell''AcquaP. GambaA. FerrariJ. A. PalmasonJ. A. Benediktsson and K. Arnason, Exploiting spectral and spatial information in hyperspectral urban data with high resolution, IEEE Geoscience and Remote Sensing Letters, 1 (2004), 322-326. 

[9]

H. FanY. ChenY. GuoH. Zhang and G. Kuang, Hyperspectral image restoration using low-rank tensor recovery, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10 (2017), 4589-4604.  doi: 10.1109/JSTARS.2017.2714338.

[10]

A. F. H. Goetz, Three decades of hyperspectral remote sensing of the earth: A personal view, Remote Sensing of Environment, 113 (2009), S5-S16. doi: 10.1016/j.rse.2007.12.014.

[11]

C. Jia and Y. Fu, Low-rank tensor subspace learning for RGB-D action recognition, IEEE Transactions on Image Processing, 25 (2016), 4641-4652.  doi: 10.1109/TIP.2016.2589320.

[12]

C. JiaM. Shao and Y. Fu, Sparse canonical temporal alignment with deep tensor decomposition for action recognition, IEEE Transactions on Image Processing, 26 (2017), 738-750.  doi: 10.1109/TIP.2016.2621664.

[13]

R. Kawakami, J. Wright, Y. W. Tai and Y. Matsushita, High-resolution hyperspectral imaging via matrix factorization, Computer Vision and Pattern Recognition (CVPR), (2011), 2329-2336. doi: 10.1109/CVPR.2011.5995457.

[14]

C. I. KanatsoulisX. FuN. D. Sidiropoulos and W. K. Ma, Hyperspectral super-resolution: A coupled tensor factorization approach, IEEE Transactions on Signal Processing, 66 (2018), 6503-6517.  doi: 10.1109/TSP.2018.2876362.

[15]

T. G. Kolda and B. W. Bader, Tensor decompositions and applications, Siam Review, 51 (2009), 455-500.  doi: 10.1137/07070111X.

[16]

W. LiG. WuF. Zhang and Q. Du, Hyperspectral image classification using deep pixel-pair features, IEEE Transactions on Geoscience and Remote Sensing, 55 (2016), 844-853. 

[17]

X. LiuW. XiaB. Wang and L. Zhang, An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data, IEEE Transactions on Geoscience and Remote Sensing, 49 (2011), 757-772.  doi: 10.1109/TGRS.2010.2068053.

[18]

S. LiR. DianL. Fang and J. M. Bioucas-Dias, Fusing hyperspectral and multispectral images via coupled sparse tensor factorization, IEEE Transactions on Image Processing, 27 (2018), 4118-4130.  doi: 10.1109/TIP.2018.2836307.

[19]

M. J. Montag and H. Stephani, Hyperspectral unmixing from incomplete and noisy data, Journal of Imaging, 2 (2016), p7. doi: 10.3390/jimaging2010007.

[20]

J. MaH. ZhouJ. ZhaoY. CaoJ. Jiang and J. Tian, Robust feature matching for remote sensing image registration via locally linear transforming, IEEE Transactions on Geoscience and Remote Sensing, 53 (2015), 6469-6481.  doi: 10.1109/TGRS.2015.2441954.

[21]

H. V. Nguyen, A. Banerjee and R. Chellappa, Tracking via object reflectance using a hyperspectral video camera, IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, (2010). doi: 10.1109/CVPRW.2010.5543780.

[22]

Y. Peng, D. Meng, Z. Xu, C. Cao, Y. Yang and B. Zhang, Decomposable nonlocal tensor dictionary learning for multispectral image denoising, IEEE Conference on Computer Vision and Pattern Recognition, (2014). doi: 10.1109/CVPR.2014.377.

[23]

Y. QianF. XiongS. ZengJ. Zhou and Y. Y. Tang, Matrix-vector nonnegative tensor factorization for blind unmixing of hyperspectral imagery, IEEE Transactions on Geoscience and Remote Sensing, 55 (2017), 1776-1792. 

[24]

M. SimoesJ. M. Bioucas-DiasL. B. Almeida and J. Chanussot, A convex formulation for hyperspectral image superresolution via subspace-based regularization, IEEE Transactions on Geoscience and Remote Sensing, 53 (2014), 3373-3388.  doi: 10.1109/TGRS.2014.2375320.

[25]

S. SoltaniM. E. Kilmer and P. C. Hansen, A tensor-based dictionary learning approach to tomographic image reconstruction, BIT Numerical Mathematics, 56 (2016), 1425-1454.  doi: 10.1007/s10543-016-0607-z.

[26]

Y. TarabalkaJ. Chanussot and J. A. Benediktsson, Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers, IEEE Transactions on Systems, Man, and Cybernetics, 40 (2010), 1267-1279.  doi: 10.1109/TSMCB.2009.2037132.

[27]

X. C. Tai and C. Wu, Augmented Lagrangian method, dual methods and split Bregman iteration for ROF model, International Conference on Scale Space and Variational Methods in Computer Vision, (2009), 502-513.

[28]

M. UzairA. Mahmood and A. Mian, Hyperspectral face recognition using 3D-DCT and partial least squares, BMVC, 10 (2013), 1-57.  doi: 10.5244/C.27.57.

[29]

M. UzairA. Mahmood and A. Mian, Hyperspectral face recognition with spatiospectral information fusion and PLS regression, IEEE Transactions on Image Processing, 24 (2015), 1127-1137.  doi: 10.1109/TIP.2015.2393057.

[30]

G. VaneR. O. GreenT. G. ChrienH. T. EnmarkE. G. Hansen and W. M. Porter, The airborne visible/infrared imaging spectrometer (AVIRIS), Remote Sensing of Environment, 44 (1993), 127-143.  doi: 10.1016/0034-4257(93)90012-M.

[31]

E. Wycoff, T. H. Chan, K. Jia, W. K. Ma and Y. Ma, A non-negative sparse promoting algorithm for high resolution hyperspectral imaging, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (2013), 1409-1413. doi: 10.1109/ICASSP.2013.6637883.

[32]

Q. WeiJ. M. Bioucas-DiasN. Dobigeon and J. Y. Tourneret, Hyperspectral and multispectral image fusion based on a sparse representation, IEEE Transactions on Geoscience and Remote Sensing, 53 (2015), 3658-3668.  doi: 10.1109/TGRS.2014.2381272.

[33]

Q. WeiN. Dobigeon and J. Y. Tourneret, Fast fusion of multi-band images based on solving a Sylvester equation, IEEE Transactions on Image Processing, 24 (2015), 4109-4121.  doi: 10.1109/TIP.2015.2458572.

[34]

W. WanJ. Liu and H. Huang, Local block operators and TV regularization based image inpainting, Inverse Problems and Imaging, 12 (2018), 1389-1410.  doi: 10.3934/ipi.2018058.

[35]

Q. Xie, Q. Zhao, D. Meng, Z. Xu, S. Gu, W. Zuo and L. Zhang, Multispectral images denoising by intrinsic tensor sparsity regularization, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016). doi: 10.1109/CVPR.2016.187.

[36]

Q. XieQ. ZhaoD. Meng and Z. Xu, Kronecker-basis-representation based tensor sparsity and its applications to tensor recovery, IEEE Transactions on Pattern Analysis and Machine Intelligence, 40 (2018), 1888-1902.  doi: 10.1109/TPAMI.2017.2734888.

[37]

N. YokoyaT. Yairi and A. Iwasaki, Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion, IEEE Transactions on Geoscience and Remote Sensing, 50 (2012), 528-537.  doi: 10.1109/TGRS.2011.2161320.

[38]

F. YasumaT. MitsunagaD. Iso and S. K. Nayar, Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum, IEEE Transactions on Image Processing, 19 (2010), 2241-2253.  doi: 10.1109/TIP.2010.2046811.

[39]

L. ZhangW. WeiC. BaiY. Gao and Y. Zhang, Exploiting clustering manifold structure for hyperspectral imagery super-resolution, IEEE Transactions on Image Processing, 27 (2018), 5969-5982.  doi: 10.1109/TIP.2018.2862629.

[40]

Z. ZhangE. PasolliM. M. Crawford and J. C. Tilton, An active learning framework for hyperspectral image classification using hierarchical segmentation, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9 (2016), 640-654.  doi: 10.1109/JSTARS.2015.2493887.

[41]

H. ZhangJ. LiY. Huang and L. Zhang, A nonlocal weighted joint sparse representation classification method for hyperspectral imagery, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7 (2014), 2056-2065. 

[42]

H. ZhangH. ZhaiL. Zhang and P. Li, Spectral-spatial sparse subspace clustering for hyperspectral remote sensing images, IEEE Transactions on Geoscience and Remote Sensing, 54 (2016), 3672-3684.  doi: 10.1109/TGRS.2016.2524557.

Figure 1.  Illustration of the hyperspectral image super-resolution task
Figure 2.  The SAMs of all competing methods on CAVE dataset with uniform blur
Figure 3.  The reconstructed images and the corresponding error images of fake and real peppers at the $ 8^{th} $ band and flowers at the $ 14^{th} $ band with Gaussian blur and scaling factor 8
Figure 4.  The reconstructed images and the corresponding error images of the Indian Pines image at the $ 60^{th} $ and $ 130^{th} $ bands with uniform blur and scaling factor 8
Figure 5.  The functional energy curve for the proposed algorithm
Figure 6.  The reconstructed images and the corresponding error images of the Pavia image at the $ 45^{th} $ and $ 75^{th} $ bands with uniform blur and scaling factor 8
Table 1.  Comparison on the average values of each of the five quantitative measures on 32 scenes from CAVE dataset with scaling factor 8
Methods PSNR SSIM RMSE SAM ERGAS
Uniform blur
CNMF[37] 43.052 0.985 2.299 5.934 1.224
Hysure[24] 41.461 0.975 2.702 10.737 1.497
STEREO[14] 39.680 0.946 3.611 12.212 1.898
Proposed 45.332 0.987 1.822 4.969 0.984
Gaussian blur
CNMF[37] 42.258 0.981 2.511 6.578 1.329
Hysure[24] 41.961 0.977 2.541 10.310 1.425
STEREO[14] 39.542 0.945 3.658 12.251 1.923
Proposed 45.206 0.987 1.847 4.983 0.995
Methods PSNR SSIM RMSE SAM ERGAS
Uniform blur
CNMF[37] 43.052 0.985 2.299 5.934 1.224
Hysure[24] 41.461 0.975 2.702 10.737 1.497
STEREO[14] 39.680 0.946 3.611 12.212 1.898
Proposed 45.332 0.987 1.822 4.969 0.984
Gaussian blur
CNMF[37] 42.258 0.981 2.511 6.578 1.329
Hysure[24] 41.961 0.977 2.541 10.310 1.425
STEREO[14] 39.542 0.945 3.658 12.251 1.923
Proposed 45.206 0.987 1.847 4.983 0.995
Table 2.  The performance comparison of the methods on the Indian Pines image with scaling factor 8
Methods PSNR SSIM RMSE SAM ERGAS
Uniform blur
CNMF[37] 42.866 0.978 2.557 2.394 9.406
Hysure[24] 45.232 0.984 1.891 1.701 9.389
STEREO[14] 48.212 0.985 1.267 1.225 9.405
Proposed 51.441 0.993 0.928 0.888 9.368
Gaussian blur
CNMF[37] 42.740 0.977 2.599 2.430 9.409
Hysure[24] 45.927 0.986 1.703 1.547 9.384
STEREO[14] 47.050 0.981 1.510 1.413 9.438
Proposed 51.326 0.993 0.950 0.904 9.369
Methods PSNR SSIM RMSE SAM ERGAS
Uniform blur
CNMF[37] 42.866 0.978 2.557 2.394 9.406
Hysure[24] 45.232 0.984 1.891 1.701 9.389
STEREO[14] 48.212 0.985 1.267 1.225 9.405
Proposed 51.441 0.993 0.928 0.888 9.368
Gaussian blur
CNMF[37] 42.740 0.977 2.599 2.430 9.409
Hysure[24] 45.927 0.986 1.703 1.547 9.384
STEREO[14] 47.050 0.981 1.510 1.413 9.438
Proposed 51.326 0.993 0.950 0.904 9.369
Table 3.  The performance comparison of noisy cases on the Pavia image with uniform blur and scaling factor 8
Methods PSNR SSIM RMSE SAM ERGAS
SNRh=35dB, SNRm=40dB
CNMF[37] 37.958 0.982 3.335 2.790 0.958
Hysure[24] 42.573 0.987 2.278 2.420 0.584
STEREO[14] 37.307 0.951 3.715 4.022 1.039
Proposed 43.731 0.989 1.848 1.944 0.497
SNRh=30dB, SNRm=35dB
CNMF[37] 37.694 0.979 3.439 2.885 0.979
Hysure[24] 41.541 0.982 2.338 2.553 0.644
STEREO[14] 35.584 0.932 4.401 4.829 1.252
Proposed 42.097 0.981 2.158 2.349 0.604
Methods PSNR SSIM RMSE SAM ERGAS
SNRh=35dB, SNRm=40dB
CNMF[37] 37.958 0.982 3.335 2.790 0.958
Hysure[24] 42.573 0.987 2.278 2.420 0.584
STEREO[14] 37.307 0.951 3.715 4.022 1.039
Proposed 43.731 0.989 1.848 1.944 0.497
SNRh=30dB, SNRm=35dB
CNMF[37] 37.694 0.979 3.439 2.885 0.979
Hysure[24] 41.541 0.982 2.338 2.553 0.644
STEREO[14] 35.584 0.932 4.401 4.829 1.252
Proposed 42.097 0.981 2.158 2.349 0.604
[1]

El Mourabit Idriss, Abdelilah Hakim, Amine Laghrib. On the well-posedness of a tensor-based second order PDE with bilateral term for image super-resolution. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022047

[2]

Changming Song, Yun Wang. Nonlocal latent low rank sparse representation for single image super resolution via self-similarity learning. Inverse Problems and Imaging, 2021, 15 (6) : 1347-1362. doi: 10.3934/ipi.2021017

[3]

Amine Laghrib, Abdelkrim Chakib, Aissam Hadri, Abdelilah Hakim. A nonlinear fourth-order PDE for multi-frame image super-resolution enhancement. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 415-442. doi: 10.3934/dcdsb.2019188

[4]

Fatimzehrae Ait Bella, Aissam Hadri, Abdelilah Hakim, Amine Laghrib. A nonlocal Weickert type PDE applied to multi-frame super-resolution. Evolution Equations and Control Theory, 2021, 10 (3) : 633-655. doi: 10.3934/eect.2020084

[5]

Yangyang Xu, Ruru Hao, Wotao Yin, Zhixun Su. Parallel matrix factorization for low-rank tensor completion. Inverse Problems and Imaging, 2015, 9 (2) : 601-624. doi: 10.3934/ipi.2015.9.601

[6]

Michael K. Ng, Chi-Pan Tam, Fan Wang. Multi-view foreground segmentation via fourth order tensor learning. Inverse Problems and Imaging, 2013, 7 (3) : 885-906. doi: 10.3934/ipi.2013.7.885

[7]

Houssem Haddar, Alexander Konschin. Factorization method for imaging a local perturbation in inhomogeneous periodic layers from far field measurements. Inverse Problems and Imaging, 2020, 14 (1) : 133-152. doi: 10.3934/ipi.2019067

[8]

Qiyu Jin, Ion Grama, Quansheng Liu. Convergence theorems for the Non-Local Means filter. Inverse Problems and Imaging, 2018, 12 (4) : 853-881. doi: 10.3934/ipi.2018036

[9]

Gabriel Peyré, Sébastien Bougleux, Laurent Cohen. Non-local regularization of inverse problems. Inverse Problems and Imaging, 2011, 5 (2) : 511-530. doi: 10.3934/ipi.2011.5.511

[10]

Olivier Bonnefon, Jérôme Coville, Guillaume Legendre. Concentration phenomenon in some non-local equation. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 763-781. doi: 10.3934/dcdsb.2017037

[11]

Jan Boman, Vladimir Sharafutdinov. Stability estimates in tensor tomography. Inverse Problems and Imaging, 2018, 12 (5) : 1245-1262. doi: 10.3934/ipi.2018052

[12]

Shenglong Hu. A note on the solvability of a tensor equation. Journal of Industrial and Management Optimization, 2022, 18 (6) : 4043-4047. doi: 10.3934/jimo.2021146

[13]

Sirui Li, Wei Wang, Pingwen Zhang. Local well-posedness and small Deborah limit of a molecule-based $Q$-tensor system. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2611-2655. doi: 10.3934/dcdsb.2015.20.2611

[14]

Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems and Imaging, 2021, 15 (3) : 475-498. doi: 10.3934/ipi.2021001

[15]

Mengmeng Zheng, Ying Zhang, Zheng-Hai Huang. Global error bounds for the tensor complementarity problem with a P-tensor. Journal of Industrial and Management Optimization, 2019, 15 (2) : 933-946. doi: 10.3934/jimo.2018078

[16]

Yiju Wang, Guanglu Zhou, Louis Caccetta. Nonsingular $H$-tensor and its criteria. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1173-1186. doi: 10.3934/jimo.2016.12.1173

[17]

Ruixue Zhao, Jinyan Fan. Quadratic tensor eigenvalue complementarity problems. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022073

[18]

Henri Berestycki, Nancy Rodríguez. A non-local bistable reaction-diffusion equation with a gap. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 685-723. doi: 10.3934/dcds.2017029

[19]

Matteo Focardi. Vector-valued obstacle problems for non-local energies. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 487-507. doi: 10.3934/dcdsb.2012.17.487

[20]

Chiu-Yen Kao, Yuan Lou, Wenxian Shen. Random dispersal vs. non-local dispersal. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 551-596. doi: 10.3934/dcds.2010.26.551

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (576)
  • HTML views (188)
  • Cited by (0)

Other articles
by authors

[Back to Top]