\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Integral formulation of the complete electrode model of electrical impedance tomography

The author is partially supported by KSF in XJTLU.
Abstract Full Text(HTML) Figure(7) Related Papers Cited by
  • We model electrical impedance tomography (EIT) based on the minimum energy principle. It results in a constrained minimization problem in terms of current density. The new formulation is proved to have a unique solution within appropriate function spaces. By characterizing its solution with the Lagrange multiplier method, we relate the new formulation to the so-called shunt model and the complete electrode model (CEM) of EIT. Based on the new formulation, we also propose a new numerical method to solve the forward problem of EIT. The new solver is formulated in terms of current. It was shown to give similar results to that of the traditional finite element method, with simulations on a 2D EIT model.

    Mathematics Subject Classification: Primary: 35F25, 46F20; Secondary: 78A70.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The layer of contact impedance for the $ i $-th electrode

    Figure 2.  A toy 2D EIT model

    Figure 3.  An unstructured mesh over the disk

    Figure 4.  Potential distributin estimated by the current-based solver (Left) and the traditional potential-based solver (Right)

    Figure 5.  Non-uniform conductivity distribution. Black region has conductivity 0.1 S/m. Gray region has conductivity 0.3 S/m. Other parts of the region has conductivity 1 S/m

    Figure 6.  Distribution of current densities estimated by the current-based solver (Left) and the traditional potential-based solver (Right)

    Figure 7.  The conformal mapping

  • [1] K. S. ChengD. IsaacsonJ. C. Newell and D. G. Gisser, Electrode models for electric current computed tomography, IEEE Transactions on Biomedical Engineering, 36 (1989), 918-924. 
    [2] P. G. Ciarlet, The Finite Element Method For Elliptic Problems, 2$^{nd}$ edition, SIAM, Philadelphia, 2002.
    [3] J. Dardé and S. Staboulis, Electrode modelling: The effect of contact impedance, ESAIM: Mathematical Modelling and Numerical Analysis, 50 (2016), 415-431.  doi: 10.1051/m2an/2015049.
    [4] V. Girault and P. Raviart, Finite Element Methods For Navier-Stokes Equations: Theory and Algorithms, 1$^{st}$ edition, Springer-Verlag, Berlin Heidelberg, 1986. doi: 10.1007/978-3-642-61623-5.
    [5] N. Hyvönen, Complete electrode model of electrical impedance tomography: Approximation properties and characterization of inclusions, SIAM Journal on Applied Mathematics, 64 (2004), 902-931.  doi: 10.1137/S0036139903423303.
    [6] N. Hyvönen and L. Mustonen, Smoothened complete electrode model, SIAM Journal on Applied Mathematics, 77 (2017), 2250-2271.  doi: 10.1137/17M1124292.
    [7] P. O. Persson and G. Strang, A simple mesh generator in matlab, SIAM Review, 46 (2004), 329-345.  doi: 10.1137/S0036144503429121.
    [8] M. PidcockS. Ciulli and S. Ispas, Singuarities of mixed boundary value problems in electrical impedance tomography, Physiological Measurement, 16 (1995), 213-218. 
    [9] E. SomersaloM. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM Journal on Applied Mathematics, 52 (1992), 1023-1040.  doi: 10.1137/0152060.
    [10] R. Winkler and A. Rieder, Resolution-controlled conductivity discretization in electrical impedance tomography, SIAM Journal on Imaging Sciences, 7 (2014), 2048-2077.  doi: 10.1137/140958955.
    [11] A. ZangwillModern Electrodynamics, 1$^{st}$ edition, Cambridge University Press, 2013. 
    [12] E. Zeidler, Applied Functional Analysis: Main Principles and Their Applications, 1$^{st}$ edition, Springer-Verlag, New York, 1995.
  • 加载中

Figures(7)

SHARE

Article Metrics

HTML views(518) PDF downloads(495) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return