- Previous Article
- IPI Home
- This Issue
-
Next Article
Integral formulation of the complete electrode model of electrical impedance tomography
Corrigendum to "Incorporating structural prior information and sparsity into EIT using parallel level sets"
1. | Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211 Kuopio, Finland |
2. | Institute for Mathematical Innovation, University of Bath, Bath BA2 7AY, UK |
3. | Centre for Medical Image Computing, University College London, Gower Street, London, WC1E 6BT, UK |
The copyright of the paper entitled "Incorporating structural prior information and sparsity into EIT using parallel level sets" [
The paper entitled "Incorporating structural prior information and sparsity into EIT using parallel level sets" [
References:
[1] |
V. Kolehmainen, M. J. Ehrhardt and S. R. Arridge,
Incorporating structural prior information and sparsity into EIT using parallel level sets, Inverse Problems & Imaging, 13 (2019), 285-307.
doi: 10.3934/ipi.2019015. |
show all references
References:
[1] |
V. Kolehmainen, M. J. Ehrhardt and S. R. Arridge,
Incorporating structural prior information and sparsity into EIT using parallel level sets, Inverse Problems & Imaging, 13 (2019), 285-307.
doi: 10.3934/ipi.2019015. |
[1] |
Ville Kolehmainen, Matthias J. Ehrhardt, Simon R. Arridge. Incorporating structural prior information and sparsity into EIT using parallel level sets. Inverse Problems and Imaging, 2019, 13 (2) : 285-307. doi: 10.3934/ipi.2019015 |
[2] |
Henrik Garde, Kim Knudsen. 3D reconstruction for partial data electrical impedance tomography using a sparsity prior. Conference Publications, 2015, 2015 (special) : 495-504. doi: 10.3934/proc.2015.0495 |
[3] |
Melody Alsaker, Jennifer L. Mueller. Use of an optimized spatial prior in D-bar reconstructions of EIT tank data. Inverse Problems and Imaging, 2018, 12 (4) : 883-901. doi: 10.3934/ipi.2018037 |
[4] |
Jutta Bikowski, Jennifer L. Mueller. 2D EIT reconstructions using Calderon's method. Inverse Problems and Imaging, 2008, 2 (1) : 43-61. doi: 10.3934/ipi.2008.2.43 |
[5] |
Mario Roldan. Hyperbolic sets and entropy at the homological level. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3417-3433. doi: 10.3934/dcds.2016.36.3417 |
[6] |
Suresh P. Sethi, Houmin Yan, H. Y. Zhang. Corrigendum. Journal of Industrial and Management Optimization, 2005, 1 (4) : 588-588. doi: 10.3934/jimo.2005.1.588 |
[7] |
Fanghua Lin, Dan Liu. On the Betti numbers of level sets of solutions to elliptic equations. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4517-4529. doi: 10.3934/dcds.2016.36.4517 |
[8] |
Suresh P. Sethi, Houmin Yan, Hanqin Zhang, Jing Zhou. Information Updated Supply Chain with Service-Level Constraints. Journal of Industrial and Management Optimization, 2005, 1 (4) : 513-531. doi: 10.3934/jimo.2005.1.513 |
[9] |
Bart Goossens, Demetrio Labate, Bernhard G Bodmann. Robust and stable region-of-interest tomographic reconstruction using a robust width prior. Inverse Problems and Imaging, 2020, 14 (2) : 291-316. doi: 10.3934/ipi.2020013 |
[10] |
Sang-Heon Lee. Development of concurrent structural decentralised discrete event system using bisimulation concept. Numerical Algebra, Control and Optimization, 2016, 6 (3) : 305-317. doi: 10.3934/naco.2016013 |
[11] |
Marc Kessböhmer, Bernd O. Stratmann. On the asymptotic behaviour of the Lebesgue measure of sum-level sets for continued fractions. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2437-2451. doi: 10.3934/dcds.2012.32.2437 |
[12] |
Sun-Yung Alice Chang, Xi-Nan Ma, Paul Yang. Principal curvature estimates for the convex level sets of semilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1151-1164. doi: 10.3934/dcds.2010.28.1151 |
[13] |
François Hamel, Régis Monneau, Jean-Michel Roquejoffre. Asymptotic properties and classification of bistable fronts with Lipschitz level sets. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 75-92. doi: 10.3934/dcds.2006.14.75 |
[14] |
Hans-Joachim Kroll, Sayed-Ghahreman Taherian, Rita Vincenti. Optimal antiblocking systems of information sets for the binary codes related to triangular graphs. Advances in Mathematics of Communications, 2022, 16 (1) : 169-183. doi: 10.3934/amc.2020107 |
[15] |
Robert Baier, Matthias Gerdts, Ilaria Xausa. Approximation of reachable sets using optimal control algorithms. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 519-548. doi: 10.3934/naco.2013.3.519 |
[16] |
Giovanni Alessandrini, Maarten V. de Hoop, Romina Gaburro, Eva Sincich. EIT in a layered anisotropic medium. Inverse Problems and Imaging, 2018, 12 (3) : 667-676. doi: 10.3934/ipi.2018028 |
[17] |
Harish Garg. Solving structural engineering design optimization problems using an artificial bee colony algorithm. Journal of Industrial and Management Optimization, 2014, 10 (3) : 777-794. doi: 10.3934/jimo.2014.10.777 |
[18] |
A. Zeblah, Y. Massim, S. Hadjeri, A. Benaissa, H. Hamdaoui. Optimization for series-parallel continuous power systems with buffers under reliability constraints using ant colony. Journal of Industrial and Management Optimization, 2006, 2 (4) : 467-479. doi: 10.3934/jimo.2006.2.467 |
[19] |
Bin Yu. Regular level sets of Lyapunov graphs of nonsingular Smale flows on 3-manifolds. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1277-1290. doi: 10.3934/dcds.2011.29.1277 |
[20] |
Xueting Tian, Paulo Varandas. Topological entropy of level sets of empirical measures for non-uniformly expanding maps. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5407-5431. doi: 10.3934/dcds.2017235 |
2021 Impact Factor: 1.483
Tools
Metrics
Other articles
by authors
[Back to Top]