\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On range condition of the tensor x-ray transform in $ \mathbb R^n $

  • * Corresponding author: Aleksander Denisiuk

    * Corresponding author: Aleksander Denisiuk
Abstract Full Text(HTML) Related Papers Cited by
  • Consider the problem of the range description of the tensor x-ray transform in $ \mathbb R^n $, $ n\ge3 $. In this paper we use the relation between the x-ray transform and the Radon transform to obtain a geometrical interpretation of the range condition and related John differential operator. As a corollary, it is proved that the range of the $ m $-tensor x-ray transform in $ \mathbb R^n $ can be described by $ \binom{n+m-2}{m+1} $ linear differential equations of order $ 2(m+1) $.

    Mathematics Subject Classification: Primary: 44A12; Secondary: 53A45.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. Denisiuk, Inversion of the x-ray transform for complexes of lines in $\Bbb R^n$, Inverse Problems, 32 (2016), 025007. doi: 10.1088/0266-5611/32/2/025007.
    [2] A. Denisiuk, Reconstruction in the cone-beam vector tomography with two sources, Inverse Problems, 34 (2018), 124008. doi: 10.1088/1361-6420/aae9ac.
    [3] A. Denisjuk, Inversion of the x-ray transform for 3D symmetric tensor fields with sources on a curve, Inverse Problems, 22 (2006), 399-411.  doi: 10.1088/0266-5611/22/2/001.
    [4] I. M. Gel'fandS. G. Gindikin and M. I. Graev, Integral geometry in affine and projective spaces, Journal of Soviet Mathematics, 18 (1982), 39-167.  doi: 10.1007/BF01098201.
    [5] I. M. Gel'fand, M. I. Graev and Z. J. Šhapiro, Integral geometry on $k$-dimensional planes, (Russian) Funkcional Anal. i Priložen, 1 (1967), 15–31.
    [6] I. M. Gel'fandM. I. Graev and  N. Y. VilenkinIntegral Geometry and Representation Theory, vol. 5 of Generalized functions, Academic Press, New York-London, 1966. 
    [7] I. M. Gel'fand and  G. E. ShilovGeneralized Functions. Volume I: Properties and Operations, Academic Press, New York-London, 1964. 
    [8] F. O. Goncharov and R. G. Novikov, An example of non-uniqueness for the weighted radon transforms along hyperplanes in multidimensions, Inverse Problems, 34 (2018), 054001. doi: 10.1088/1361-6420/aab24d.
    [9] F. John, The ultrahyperbolic differential equation with four independent variables, Duke Math. J., 4 (1938), 300-322.  doi: 10.1215/S0012-7094-38-00423-5.
    [10] P. Maass, The x-ray transform: Singular value decomposition and resolution, Inverse Problems, 3 (1987), 729-741.  doi: 10.1088/0266-5611/3/4/016.
    [11] N. S. Nadirashvili, V. A. Sharafutdinov and S. G. Vlăduţ, The John equation for tensor tomography in three-dimensions, Inverse Problems, 32 (2016), 105013. doi: 10.1088/0266-5611/32/10/105013.
    [12] E. Y. Pantjukhina, Description of the image of a ray transform in two-dimensional case, Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk, 144 1990, 80–89.
    [13] V. A. Sharafutdinov, Integral Geometry of Tensor Fields, Inverse and ill-posed problems series, VSP, Utrecht, 1994. doi: 10.1515/9783110900095.
    [14] M. Spivak, Calculus On Manifolds: A Modern Approach To Classical Theorems Of Advanced Calculus, W. A. Benjamin, Inc., New York-Amsterdam, 1965.
  • 加载中
SHARE

Article Metrics

HTML views(404) PDF downloads(317) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return