[1]
|
G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing, Vol. 147, Applied Mathematical Sciences, 2$^nd$ edition, Springer, New York, 2006.
|
[2]
|
F. L. Bauer and C. T. Fike, Norms and exclusion theorems, Numer. Math., 2 (1960), 137-141.
doi: 10.1007/BF01386217.
|
[3]
|
D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Computer Science and Applied Mathematics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982.
|
[4]
|
S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends in Machine Learning, 3 (2011), 1-122.
|
[5]
|
E. J. Candès and J. Romberg, Sparsity and incoherence in compressive sampling, Inverse Problems, 23 (2007), 969–985.
doi: 10.1088/0266-5611/23/3/008.
|
[6]
|
E. J. Candès, J. Romberg and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory, 52 (2006), 489–509.
doi: 10.1109/TIT.2005.862083.
|
[7]
|
A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vision, 20 (2004), 89-97.
doi: 10.1023/B:JMIV.0000011321.19549.88.
|
[8]
|
I. Daubechies, M. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Comm. Pure Appl. Math., 57 (2004), 1413–1457.
doi: 10.1002/cpa.20042.
|
[9]
|
D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), 1289–1306.
doi: 10.1109/TIT.2006.871582.
|
[10]
|
W. J. Fu, Penalized regressions: The bridge versus the lasso, J. Comput. Graph. Statist., 7 (1998), 397-416.
doi: 10.2307/1390712.
|
[11]
|
T. Goldstein and S. Osher, The split Bregman method for $L1$-regularized problems, SIAM J. Imaging Sci., 2 (2009), 323-343.
doi: 10.1137/080725891.
|
[12]
|
P. J. Huber, Robust estimation of a location parameter, Ann. Math. Statist., 35 (1964), 73–101.
doi: 10.1214/aoms/1177703732.
|
[13]
|
E. M. Kalmoun, An investigation of smooth TV-like regularization in the context of the optical flow problem, J. Imaging, 4 (2018), 31.
doi: 10.3390/jimaging4020031.
|
[14]
|
X. Liu and J. Liu, On image restoration from random sampling noisy frequency data with regularization, Inverse Probl. Sci. Eng., 27 (2019), 1765-1789.
doi: 10.1080/17415977.2018.1557655.
|
[15]
|
K. Madsen and H. B. Nielsen, A finite smoothing algorithm for linear $I_1$ estimation, SIAM J. Optim., 3 (1993), 223–235.
doi: 10.1137/0803010.
|
[16]
|
M. K. Ng, R. H. Chan and W.-C. Tang, A fast algorithm for deblurring models with Neumann boundary conditions, SIAM J. Sci. Comput., 21 (1999), 851–866.
doi: 10.1137/S1064827598341384.
|
[17]
|
S. Osher, M. Burger, D. Goldfarb, J. Xu and W. Yin, An iterative regularization method for total variation-based image restoration, Multiscale Model. Simul., 4 (2005), 460-489.
doi: 10.1137/040605412.
|
[18]
|
S. Perkins, K. Lacker and J. Theiler, Grafting: Fast, incremental feature selection by gradient descent in function space, J. Mach. Learn. Res., 3 (2003), 1333-1356.
doi: 10.1162/153244303322753698.
|
[19]
|
G. Plonka and J. Ma, Curvelet-wavelet regularized split Bregman iteration for compressed sensing, Int. J. Wavelets Multiresolut. Inf. Process., 9 (2011), 79-110.
doi: 10.1142/S0219691311003955.
|
[20]
|
M. Schmidt, G. Fung and R. Rosales, Fast optimization methods for $L1$ regularization: A comparative study and two new approaches, in Machine Learning: ECML 2007, Lecture Notes in Computer Science, 4701, Springer, Berlin Heidelberg, 2007,286–297.
doi: 10.1007/978-3-540-74958-5_28.
|
[21]
|
S. K. Shevade and S. S. Keerthi, A simple and efficient algorithm for gene selection using sparse logistic regression, Bioinformatics, 19 (2003), 2246-2253.
doi: 10.1093/bioinformatics/btg308.
|
[22]
|
X. Shu and N. Ahuja, Hybrid compressive sampling via a new total variation TVL1, in Computer Vision – ECCV 2010, Lecture Notes in Computer Science, 6316, Springer, Berlin, Heidelberg, 2010,393–404.
doi: 10.1007/978-3-642-15567-3_29.
|
[23]
|
W. Sun and Y.-X. Yuan, Optimization Theory and Methods, Optimization and Its Applications, 1, 1$^st$ edition, Springer, New York, 2006.
|
[24]
|
C. R. Vogel, Computational Methods for Inverse Problems, Frontiers in Applied Mathematics, 23, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002.
doi: 10.1137/1.9780898717570.
|
[25]
|
Y. Wang, J. Yang, W. Yin and Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction, SIAM J. Imaging Sci., 1 (2008), 248–272.
doi: 10.1137/080724265.
|
[26]
|
J. Yang, W. Yin, Y. Zhang and Y. Wang, A fast algorithm for edge-preserving variational multichannel image restoration, SIAM J. Imaging Sci., 2 (2009), 569-592.
doi: 10.1137/080730421.
|
[27]
|
J. Yang, Y. Zhang and W. Yin, A fast TVL1-L2 minimization algorithm for signal reconstruction from partial Fourier data, 2008.
|
[28]
|
J. Yang, Y. Zhang and W. Yin, An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise, SIAM J. Sci. Comput., 31 (2009), 2842-2865.
doi: 10.1137/080732894.
|
[29]
|
J. Yang, Y. Zhang and W. Yin, A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data, IEEE Journal of Selected Topics in Signal Processing, 4 (2010), 288–297.
|
[30]
|
W. Yin, S. Osher, D. Goldfarb and J. Darbon, Bregman iterative algorithms for $I_1$-minimization with applications to compressed sensing, SIAM J. Imaging Sci., 1 (2008), 143-168.
doi: 10.1137/070703983.
|
[31]
|
X. Zhang, M. Burger, X. Bresson and S. Osher, Bregmanized nonlocal regularization for deconvolution and sparse reconstruction, SIAM J. Imaging Sci., 3 (2010), 253-276.
doi: 10.1137/090746379.
|
[32]
|
Y. Zhu and I.-L. Chern, Convergence of the alternating minimization method for sparse MR image reconstruction, J. Inform. Comput. Sci., 8 (2011), 2067-2075.
|
[33]
|
Y. Zhu and X. Liu, A fast method for L1-L2 modeling for MR image compressive sensing, J. Inverse Ill-Posed Probl., 23 (2015), 211–218.
doi: 10.1515/jiip-2013-0046.
|
[34]
|
Y. Zhu, Y. Shi, B. Zhang and X. Yu, Weighted-average alternating minimization method for magnetic resonance image reconstruction based on compressive sensing, Inverse Probl. Imaging, 8 (2014), 925-937.
doi: 10.3934/ipi.2014.8.925.
|