• Previous Article
    Stability estimates for time-dependent coefficients appearing in the magnetic Schrödinger equation from arbitrary boundary measurements
  • IPI Home
  • This Issue
  • Next Article
    Numerical recovery of magnetic diffusivity in a three dimensional spherical dynamo equation
October  2020, 14(5): 819-839. doi: 10.3934/ipi.2020038

Hölder-stable recovery of time-dependent electromagnetic potentials appearing in a dynamical anisotropic Schrödinger equation

1. 

Aix-Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France

2. 

Department of Mathematics, University College London, London, UK

Y. Kian was partially supported by the Agence Nationale de la Recherche under grant ANR-17-CE40-0029.

Received  November 2019 Revised  March 2020 Published  July 2020

Fund Project: A. Tetlow was supported by EPSRC DTP studentship EP/N509577/1

We consider the inverse problem of Hölder-stably determining the time- and space-dependent coefficients of the Schrödinger equation on a simple Riemannian manifold with boundary of dimension $ n\geq2 $ from the knowledge of the Dirichlet-to-Neumann map. Assuming the divergence of the magnetic potential is known, we show that the electric and magnetic potentials can be Hölder-stably recovered from these data. Here we also remove the smallness assumption for the solenoidal part of the magnetic potential present in previous results.

Citation: Yavar Kian, Alexander Tetlow. Hölder-stable recovery of time-dependent electromagnetic potentials appearing in a dynamical anisotropic Schrödinger equation. Inverse Problems and Imaging, 2020, 14 (5) : 819-839. doi: 10.3934/ipi.2020038
References:
[1]

Y. E. Anikonov and V. G. Romanov, On uniqueness of determination of a form of first degree by its integrals along geodesics, J. Inv. Ill-Posed Problems, 5 (1997), 487-480.  doi: 10.1515/jiip.1997.5.6.487.

[2]

M. Bellassoued, Stable determination of coefficients in the dynamical Schrödinger equation in a magnetic field, Inverse Problems, 33 (2017), 36pp. doi: 10.1088/1361-6420/aa5fc5.

[3]

M. Bellassoued and M. Choulli, Stability estimate for an inverse problem for the magnetic Schrödinger equation from the Dirichlet-to-Neumann map, J. Funct. Anal., 258 (2010), 161-195.  doi: 10.1016/j.jfa.2009.06.010.

[4]

M. Bellassoued and D. D. S. Ferreira, Stable determination of coefficients in the dynamical anisotropic Schrödinger equation from the Dirichlet-to-Neumann map, Inverse Problems, 26 (2010), 125010. doi: 10.1088/0266-5611/26/12/125010.

[5]

M. BellassouedY. Kian and E. Soccorsi, An inverse problem for the magnetic Schrödinger equation in infinite cylindrical domains, Publications of the Research Institute for Mathematical Sciences, 54 (2018), 679-728.  doi: 10.4171/PRIMS/54-4-1.

[6]

M. Bellassoued and Z. Rezig, Simultaneous determination of two coefficients in the Riemannian hyperbolic equation from boundary measurements, Ann. Glob. Anal. Geom., 56 (2019), 291-325.  doi: 10.1007/s10455-019-09668-7.

[7]

I. B. Aicha, Stability estimate for an inverse problem for the Schrödinger equation in a magnetic field with time-dependent coefficient, Journal of Mathematical Physics, 58 (2017), 071508. doi: 10.1063/1.4995606.

[8]

M. ChoulliY. Kian and E. Soccorsi, Stable determination of time-dependent scalar potential from boundary measurements in a periodic quantum waveguide, SIAM J. Math. Anal., 47 (2015), 4536-4558.  doi: 10.1137/140986268.

[9]

G. Eskin, Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect, J. Math. Phys., 49 (2008), 022105. doi: 10.1063/1.2841329.

[10]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, London, 1985.

[11]

Y. Kian and E. Soccorsi, Hölder stably determining the time-dependent electromagnetic potential of the Schrödinger equation, SIAM J. Math. Anal., 51 (2019), 627-647.  doi: 10.1137/18M1197308.

[12]

J. M. Lee, Riemannian Manifolds: An Introduction to Curvature, Springer, 1997. doi: 10.1007/b98852.

[13]

J-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Dunod, Paris, 1968.

[14]

C. Montalto, Stable determination of a simple metric, a covector field and a potential from the hyperbolic Dirichlet-to-Neumann map, Communications in Partial Differential Equations, 39 (2012), 120-145.  doi: 10.1080/03605302.2013.843429.

[15]

M. Salo, Inverse problems for nonsmooth first order perturbations of the Laplacian, Ann. Acad. Scient. Fenn. Math. Dissertations, 139 (2004).

[16]

V. Sharafutdinov, Integral Geometry of Tensor Fields, VSP, Utrecht, the Netherlands, 1994. doi: 10.1515/9783110900095.

[17]

M. Spivak, A Comprehensive Introduction to Differential Geometry, Publish or Perish Inc., USA, 1970.

[18]

P. Stefanov and G. Uhlmann, Stability estimates for the X-ray transform of tensor fields and boundary rigidity, Duke Math. J., 123 (2004), 445-467.  doi: 10.1215/S0012-7094-04-12332-2.

[19] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970. 

show all references

References:
[1]

Y. E. Anikonov and V. G. Romanov, On uniqueness of determination of a form of first degree by its integrals along geodesics, J. Inv. Ill-Posed Problems, 5 (1997), 487-480.  doi: 10.1515/jiip.1997.5.6.487.

[2]

M. Bellassoued, Stable determination of coefficients in the dynamical Schrödinger equation in a magnetic field, Inverse Problems, 33 (2017), 36pp. doi: 10.1088/1361-6420/aa5fc5.

[3]

M. Bellassoued and M. Choulli, Stability estimate for an inverse problem for the magnetic Schrödinger equation from the Dirichlet-to-Neumann map, J. Funct. Anal., 258 (2010), 161-195.  doi: 10.1016/j.jfa.2009.06.010.

[4]

M. Bellassoued and D. D. S. Ferreira, Stable determination of coefficients in the dynamical anisotropic Schrödinger equation from the Dirichlet-to-Neumann map, Inverse Problems, 26 (2010), 125010. doi: 10.1088/0266-5611/26/12/125010.

[5]

M. BellassouedY. Kian and E. Soccorsi, An inverse problem for the magnetic Schrödinger equation in infinite cylindrical domains, Publications of the Research Institute for Mathematical Sciences, 54 (2018), 679-728.  doi: 10.4171/PRIMS/54-4-1.

[6]

M. Bellassoued and Z. Rezig, Simultaneous determination of two coefficients in the Riemannian hyperbolic equation from boundary measurements, Ann. Glob. Anal. Geom., 56 (2019), 291-325.  doi: 10.1007/s10455-019-09668-7.

[7]

I. B. Aicha, Stability estimate for an inverse problem for the Schrödinger equation in a magnetic field with time-dependent coefficient, Journal of Mathematical Physics, 58 (2017), 071508. doi: 10.1063/1.4995606.

[8]

M. ChoulliY. Kian and E. Soccorsi, Stable determination of time-dependent scalar potential from boundary measurements in a periodic quantum waveguide, SIAM J. Math. Anal., 47 (2015), 4536-4558.  doi: 10.1137/140986268.

[9]

G. Eskin, Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect, J. Math. Phys., 49 (2008), 022105. doi: 10.1063/1.2841329.

[10]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, London, 1985.

[11]

Y. Kian and E. Soccorsi, Hölder stably determining the time-dependent electromagnetic potential of the Schrödinger equation, SIAM J. Math. Anal., 51 (2019), 627-647.  doi: 10.1137/18M1197308.

[12]

J. M. Lee, Riemannian Manifolds: An Introduction to Curvature, Springer, 1997. doi: 10.1007/b98852.

[13]

J-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Dunod, Paris, 1968.

[14]

C. Montalto, Stable determination of a simple metric, a covector field and a potential from the hyperbolic Dirichlet-to-Neumann map, Communications in Partial Differential Equations, 39 (2012), 120-145.  doi: 10.1080/03605302.2013.843429.

[15]

M. Salo, Inverse problems for nonsmooth first order perturbations of the Laplacian, Ann. Acad. Scient. Fenn. Math. Dissertations, 139 (2004).

[16]

V. Sharafutdinov, Integral Geometry of Tensor Fields, VSP, Utrecht, the Netherlands, 1994. doi: 10.1515/9783110900095.

[17]

M. Spivak, A Comprehensive Introduction to Differential Geometry, Publish or Perish Inc., USA, 1970.

[18]

P. Stefanov and G. Uhlmann, Stability estimates for the X-ray transform of tensor fields and boundary rigidity, Duke Math. J., 123 (2004), 445-467.  doi: 10.1215/S0012-7094-04-12332-2.

[19] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970. 
[1]

Holger Teismann. The Schrödinger equation with singular time-dependent potentials. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 705-722. doi: 10.3934/dcds.2000.6.705

[2]

Mourad Bellassoued, Oumaima Ben Fraj. Stability estimates for time-dependent coefficients appearing in the magnetic Schrödinger equation from arbitrary boundary measurements. Inverse Problems and Imaging, 2020, 14 (5) : 841-865. doi: 10.3934/ipi.2020039

[3]

Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic and Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639

[4]

Hristo Genev, George Venkov. Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 903-923. doi: 10.3934/dcdss.2012.5.903

[5]

Alexander Zlotnik. The Numerov-Crank-Nicolson scheme on a non-uniform mesh for the time-dependent Schrödinger equation on the half-axis. Kinetic and Related Models, 2015, 8 (3) : 587-613. doi: 10.3934/krm.2015.8.587

[6]

Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems and Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014

[7]

P. Cerejeiras, U. Kähler, M. M. Rodrigues, N. Vieira. Hodge type decomposition in variable exponent spaces for the time-dependent operators: the Schrödinger case. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2253-2272. doi: 10.3934/cpaa.2014.13.2253

[8]

Jinpeng An. Hölder stability of diffeomorphisms. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 315-329. doi: 10.3934/dcds.2009.24.315

[9]

Francesco Di Plinio, Gregory S. Duane, Roger Temam. Time-dependent attractor for the Oscillon equation. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 141-167. doi: 10.3934/dcds.2011.29.141

[10]

Jin Takahashi, Eiji Yanagida. Time-dependent singularities in the heat equation. Communications on Pure and Applied Analysis, 2015, 14 (3) : 969-979. doi: 10.3934/cpaa.2015.14.969

[11]

Mourad Choulli, Yavar Kian. Stability of the determination of a time-dependent coefficient in parabolic equations. Mathematical Control and Related Fields, 2013, 3 (2) : 143-160. doi: 10.3934/mcrf.2013.3.143

[12]

Guanghui Hu, Yavar Kian. Uniqueness and stability for the recovery of a time-dependent source in elastodynamics. Inverse Problems and Imaging, 2020, 14 (3) : 463-487. doi: 10.3934/ipi.2020022

[13]

Zhidong Zhang. An undetermined time-dependent coefficient in a fractional diffusion equation. Inverse Problems and Imaging, 2017, 11 (5) : 875-900. doi: 10.3934/ipi.2017041

[14]

Chan Liu, Jin Wen, Zhidong Zhang. Reconstruction of the time-dependent source term in a stochastic fractional diffusion equation. Inverse Problems and Imaging, 2020, 14 (6) : 1001-1024. doi: 10.3934/ipi.2020053

[15]

Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307

[16]

Jungkwon Kim, Hyeongjin Lee, Ihyeok Seo, Jihyeon Seok. On Morawetz estimates with time-dependent weights for the Klein-Gordon equation. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6275-6288. doi: 10.3934/dcds.2020279

[17]

Haixia Li. Lifespan of solutions to a parabolic type Kirchhoff equation with time-dependent nonlinearity. Evolution Equations and Control Theory, 2021, 10 (4) : 723-732. doi: 10.3934/eect.2020088

[18]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Robustness of time-dependent attractors in H1-norm for nonlocal problems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1011-1036. doi: 10.3934/dcdsb.2018140

[19]

Eugen Mihailescu. Approximations for Gibbs states of arbitrary Hölder potentials on hyperbolic folded sets. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 961-975. doi: 10.3934/dcds.2012.32.961

[20]

Jeongmin Han. Local Lipschitz regularity for functions satisfying a time-dependent dynamic programming principle. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2617-2640. doi: 10.3934/cpaa.2020114

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (172)
  • HTML views (149)
  • Cited by (0)

Other articles
by authors

[Back to Top]