-
Previous Article
Inverse scattering and stability for the biharmonic operator
- IPI Home
- This Issue
-
Next Article
Two new non-negativity preserving iterative regularization methods for ill-posed inverse problems
Direct and inverse spectral problems for a star graph of Stieltjes strings damped at a pendant vertex
1. | College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, China |
2. | South Ukrainian national Pedagogical University, Staroprtofrankovskaya str., 26, Odessa 65020, Ukraine |
A spectral problem occurring in description of small transverse vibrations of a star graph of Stieltjes strings is considered. At all but one pendant vertices Dirichlet conditions are imposed which mean that these vertices are clamped. One vertex (the root) can move with damping in the direction orthogonal to the equilibrium position of the strings. We describe the spectrum of such spectral problem. The corresponding inverse problem lies in recovering the values of point masses and the lengths of the intervals between the masses using the spectrum and some other parameters. We propose conditions on a sequence of complex numbers and a collection of real numbers to be the spectrum of a problem we consider and the lengths of the edges, correspondingly.
References:
[1] |
O. Boyko, O. Martynyuk and V. Pivovarchik,
On maximal multiplicity of eigenvalues of finite-dimensional spectral problem on a graph, Methods of Funct. Anal. Topology, 25 (2019), 104-117.
|
[2] |
J. Genin and J. S. Maybee,
Mechanical vibrations trees, J. Math. Anal. Appl., 45 (1974), 746-763.
doi: 10.1016/0022-247X(74)90065-1. |
[3] |
G. Gladwell, Inverse Problems in Vibration, Kluwer Academic Publishers, Dordrecht, 2004. |
[4] |
G. Gladwell, Matrix inverse eigenvalue problems, Dynamical Inverse Problems: Theory and Application, CISM Courses and Lect., SpringerWienNewYork, Vienna, 529 (2011), 1–28.
doi: 10.1007/978-3-7091-0696-9_1. |
[5] |
F. R. Gantmakher and M. G. Krein, Oscillating Matrices and Kernels and Small Vibrations of Mechanical Systems (in Russian), GITTL, Moscow-Leningrad, (1950), Revised edition, AMS Chelsea Publishing, Providence, RI, 2002.
doi: 10.1090/chel/345. |
[6] |
V. A. Marchenko, Introduction to The Theory of Inverse Problems of Spectral Analysis (in Russian), Acta, Kharkov, 2005. |
[7] |
O. Martynyuk, V. Pivovarchik and C. Tretter,
Inverse problem for a damped Stieltjes string from parts of spectra, Appl. Anal., 94 (2015), 2605-2619.
doi: 10.1080/00036811.2014.996874. |
[8] |
M. Möller and V. Pivovarchik,
Damped star graphs of Stieltjes strings, Proc. Amer. Math. Soc., 145 (2017), 1717-1728.
doi: 10.1090/proc/13367. |
[9] |
M. Möller and V. Pivovarchik, Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and Their Applications, Birkhäuser, Cham, 2015.
doi: 10.1007/978-3-319-17070-1. |
[10] |
V. Pivovarchik, Existence of a tree of Stieltjes strings corresponding to two given spectra,, J. Phys. A, 42 (2009), 375213, 16 pp.
doi: 10.1088/1751-8113/42/37/375213. |
[11] |
V. Pivovarchik, N. Rozhenko and C. Tretter,
Dirichlet-Neumann inverse spectral problem for a star graph of Stieltjes strings, Linear Algebra Appl., 439 (2013), 2263-2292.
doi: 10.1016/j.laa.2013.07.003. |
[12] |
V. Pivovarchik and C. Tretter,
Location and multiplicities of eigenvalues for a star graph of Stieltjes strings, J. Difference Equ. Appl., 21 (2015), 383-402.
doi: 10.1080/10236198.2014.992425. |
[13] |
K. Veselić,
On linear vibrational systems with one dimensional damping, Appl. Anal., 29 (1988), 1-18.
doi: 10.1080/00036818808839770. |
[14] |
K. Veselić,
On linear vibrational systems with one dimensional damping II, Integr. Equ. Oper. Theory, 13 (1990), 883-897.
doi: 10.1007/BF01198923. |
show all references
References:
[1] |
O. Boyko, O. Martynyuk and V. Pivovarchik,
On maximal multiplicity of eigenvalues of finite-dimensional spectral problem on a graph, Methods of Funct. Anal. Topology, 25 (2019), 104-117.
|
[2] |
J. Genin and J. S. Maybee,
Mechanical vibrations trees, J. Math. Anal. Appl., 45 (1974), 746-763.
doi: 10.1016/0022-247X(74)90065-1. |
[3] |
G. Gladwell, Inverse Problems in Vibration, Kluwer Academic Publishers, Dordrecht, 2004. |
[4] |
G. Gladwell, Matrix inverse eigenvalue problems, Dynamical Inverse Problems: Theory and Application, CISM Courses and Lect., SpringerWienNewYork, Vienna, 529 (2011), 1–28.
doi: 10.1007/978-3-7091-0696-9_1. |
[5] |
F. R. Gantmakher and M. G. Krein, Oscillating Matrices and Kernels and Small Vibrations of Mechanical Systems (in Russian), GITTL, Moscow-Leningrad, (1950), Revised edition, AMS Chelsea Publishing, Providence, RI, 2002.
doi: 10.1090/chel/345. |
[6] |
V. A. Marchenko, Introduction to The Theory of Inverse Problems of Spectral Analysis (in Russian), Acta, Kharkov, 2005. |
[7] |
O. Martynyuk, V. Pivovarchik and C. Tretter,
Inverse problem for a damped Stieltjes string from parts of spectra, Appl. Anal., 94 (2015), 2605-2619.
doi: 10.1080/00036811.2014.996874. |
[8] |
M. Möller and V. Pivovarchik,
Damped star graphs of Stieltjes strings, Proc. Amer. Math. Soc., 145 (2017), 1717-1728.
doi: 10.1090/proc/13367. |
[9] |
M. Möller and V. Pivovarchik, Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and Their Applications, Birkhäuser, Cham, 2015.
doi: 10.1007/978-3-319-17070-1. |
[10] |
V. Pivovarchik, Existence of a tree of Stieltjes strings corresponding to two given spectra,, J. Phys. A, 42 (2009), 375213, 16 pp.
doi: 10.1088/1751-8113/42/37/375213. |
[11] |
V. Pivovarchik, N. Rozhenko and C. Tretter,
Dirichlet-Neumann inverse spectral problem for a star graph of Stieltjes strings, Linear Algebra Appl., 439 (2013), 2263-2292.
doi: 10.1016/j.laa.2013.07.003. |
[12] |
V. Pivovarchik and C. Tretter,
Location and multiplicities of eigenvalues for a star graph of Stieltjes strings, J. Difference Equ. Appl., 21 (2015), 383-402.
doi: 10.1080/10236198.2014.992425. |
[13] |
K. Veselić,
On linear vibrational systems with one dimensional damping, Appl. Anal., 29 (1988), 1-18.
doi: 10.1080/00036818808839770. |
[14] |
K. Veselić,
On linear vibrational systems with one dimensional damping II, Integr. Equ. Oper. Theory, 13 (1990), 883-897.
doi: 10.1007/BF01198923. |
[1] |
Svetlana Katok, Ilie Ugarcovici. Theory of $(a,b)$-continued fraction transformations and applications. Electronic Research Announcements, 2010, 17: 20-33. doi: 10.3934/era.2010.17.20 |
[2] |
Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281 |
[3] |
Svetlana Katok, Ilie Ugarcovici. Structure of attractors for $(a,b)$-continued fraction transformations. Journal of Modern Dynamics, 2010, 4 (4) : 637-691. doi: 10.3934/jmd.2010.4.637 |
[4] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control and Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[5] |
Clelia Marchionna. Free vibrations in space of the single mode for the Kirchhoff string. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2947-2971. doi: 10.3934/cpaa.2013.12.2947 |
[6] |
Sergei Avdonin, Pavel Kurasov, Marlena Nowaczyk. Inverse problems for quantum trees II: Recovering matching conditions for star graphs. Inverse Problems and Imaging, 2010, 4 (4) : 579-598. doi: 10.3934/ipi.2010.4.579 |
[7] |
Günter Leugering, Gisèle Mophou, Maryse Moutamal, Mahamadi Warma. Optimal control problems of parabolic fractional Sturm-Liouville equations in a star graph. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022015 |
[8] |
Alessia Berti, Maria Grazia Naso. Vibrations of a damped extensible beam between two stops. Evolution Equations and Control Theory, 2013, 2 (1) : 35-54. doi: 10.3934/eect.2013.2.35 |
[9] |
Nemanja Kosovalić, Brian Pigott. Self-excited vibrations for damped and delayed higher dimensional wave equations. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2413-2435. doi: 10.3934/dcds.2019102 |
[10] |
Jaime Angulo Pava, Nataliia Goloshchapova. On the orbital instability of excited states for the NLS equation with the δ-interaction on a star graph. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5039-5066. doi: 10.3934/dcds.2018221 |
[11] |
Amin Boumenir, Vu Kim Tuan. Reconstruction of the coefficients of a star graph from observations of its vertices. Inverse Problems and Imaging, 2018, 12 (6) : 1293-1308. doi: 10.3934/ipi.2018054 |
[12] |
Serena Dipierro, Alessio Figalli, Giampiero Palatucci, Enrico Valdinoci. Asymptotics of the $s$-perimeter as $s\searrow 0$. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2777-2790. doi: 10.3934/dcds.2013.33.2777 |
[13] |
Sergei A. Avdonin, Boris P. Belinskiy. On the basis properties of the functions arising in the boundary control problem of a string with a variable tension. Conference Publications, 2005, 2005 (Special) : 40-49. doi: 10.3934/proc.2005.2005.40 |
[14] |
Ahmed Bchatnia, Amina Boukhatem. Stability of a damped wave equation on an infinite star-shaped network. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022024 |
[15] |
Shuichi Jimbo, Yoshihisa Morita. Asymptotic behavior of entire solutions to reaction-diffusion equations in an infinite star graph. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4013-4039. doi: 10.3934/dcds.2021026 |
[16] |
Giuseppe Maria Coclite, Carlotta Donadello. Vanishing viscosity on a star-shaped graph under general transmission conditions at the node. Networks and Heterogeneous Media, 2020, 15 (2) : 197-213. doi: 10.3934/nhm.2020009 |
[17] |
Patrick M. Fitzpatrick, Jacobo Pejsachowicz. Branching and bifurcation. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 1955-1975. doi: 10.3934/dcdss.2019127 |
[18] |
Chuan-Fu Yang, Natalia Pavlovna Bondarenko. A partial inverse problem for the Sturm-Liouville operator on the lasso-graph. Inverse Problems and Imaging, 2019, 13 (1) : 69-79. doi: 10.3934/ipi.2019004 |
[19] |
Mario Roy. A new variation of Bowen's formula for graph directed Markov systems. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2533-2551. doi: 10.3934/dcds.2012.32.2533 |
[20] |
Alain Haraux. On some damped 2 body problems. Evolution Equations and Control Theory, 2021, 10 (3) : 657-671. doi: 10.3934/eect.2021009 |
2021 Impact Factor: 1.483
Tools
Metrics
Other articles
by authors
[Back to Top]