[1]

E. Amaldi and V. Kann, On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems, Theoretical Computer Science, 209 (1998), 237260.
doi: 10.1016/S03043975(97)001151.

[2]

T. Bouwmans and E. H. Zahzah, Robust pca via principal component pursuit: A review for a comparative evaluation in video surveillance, Computer Vision and Image Understanding, 122 (2014), 2234.

[3]

H. Cai, J.F. Cai and K. Wei, Accelerated alternating projections for robust principal component analysis, The Journal of Machine Learning Research, 20 (2019), 685717.

[4]

E. J. Candès, X. Li, Y. Ma and J. Wright, Robust principal component analysis?, Journal of the ACM (JACM), 58 (2011), 137.
doi: 10.1145/1970392.1970395.

[5]

R. Chartrand, Exact reconstruction of sparse signals via nonconvex minimization, IEEE Signal Processing Letters, 14 (2007), 707710.
doi: 10.1109/LSP.2007.898300.

[6]

J. P. Cunningham and Z. Ghahramani, Linear dimensionality reduction: Survey, insights, and generalizations, The Journal of Machine Learning Research, 16 (2015), 28592900.

[7]

J. F. P. Da Costa, H. Alonso and L. Roque, A weighted principal component analysis and its application to gene expression data, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8 (2009), 246252.

[8]

F. De la Torre and M. J. Black, Robust principal component analysis for computer vision, in Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, vol. 1, IEEE, 2001, 362369.

[9]

E. Elhamifar and R. Vidal, Sparse subspace clustering: Algorithm, theory, and applications, IEEE transactions on pattern analysis and machine intelligence, 35 (2013), 27652781.
doi: 10.1109/TPAMI.2013.57.

[10]

J. Fan and R. Li, Variable selection via nonconcave penalized likelihood and its oracle properties, Journal of the American statistical Association, 96 (2001), 13481360.
doi: 10.1198/016214501753382273.

[11]

R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge university press, 2013.

[12]

X.L. Huang, L. Shi and M. Yan, Nonconvex sorted $\ell_1$ minimization for sparse approximation, Journal of the Operations Research Society of China, 3 (2015), 207229.
doi: 10.1007/s4030501400694.

[13]

G. Li and T. K. Pong, Global convergence of splitting methods for nonconvex composite optimization, SIAM Journal on Optimization, 25 (2015), 24342460.
doi: 10.1137/140998135.

[14]

H. Li and Z. Lin, Accelerated proximal gradient methods for nonconvex programming, in Advances in Neural Information Processing Systems, 2015, 379387.

[15]

Z. Lin, M. Chen and Y. Ma, The augmented lagrange multiplier method for exact recovery of corrupted lowrank matrices. 2010, arXiv preprint arXiv: 1009.5055, (2010), 663670.

[16]

G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu and Y. Ma, Robust recovery of subspace structures by lowrank representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 35 (2012), 171184.

[17]

X. Liu, Z. Wen and Y. Zhang, An efficient GaussNewton algorithm for symmetric lowrank product matrix approximations, SIAM Journal on Optimization, 25 (2015), 15711608.
doi: 10.1137/140971464.

[18]

Y. Lou and M. Yan, Fast l1l2 minimization via a proximal operator, Journal of Scientific Computing, 74 (2018), 767785.
doi: 10.1007/s1091501704632.

[19]

N. Sha, M. Yan and Y. Lin, Efficient seismic denoising techniques using robust principal component analysis, in SEG Technical Program Expanded Abstracts 2019, Society of Exploration Geophysicists, 2019, 25432547.

[20]

Y. Shen, H. Xu and X. Liu, An alternating minimization method for robust principal component analysis, Optimization Methods and Software, 34 (2019), 12511276.
doi: 10.1080/10556788.2018.1496086.

[21]

M. Tao and X. Yuan, Recovering lowrank and sparse components of matrices from incomplete and noisy observations, SIAM Journal on Optimization, 21 (2011), 5781.
doi: 10.1137/100781894.

[22]

L. N. Trefethen and D. Bau â…¢, Numerical linear algebra, vol. 50, SIAM, 1997.

[23]

F. Wen, R. Ying, P. Liu and T.K. Truong, Nonconvex regularized robust PCA using the proximal block coordinate descent algorithm, IEEE Transactions on Signal Processing, 67 (2019), 54025416.
doi: 10.1109/TSP.2019.2940121.

[24]

Z. Wen, W. Yin and Y. Zhang, Solving a lowrank factorization model for matrix completion by a nonlinear successive overrelaxation algorithm, Mathematical Programming Computation, 4 (2012), 333361.
doi: 10.1007/s1253201200441.

[25]

J. Wright, A. Ganesh, S. Rao, Y. Peng and Y. Ma, Robust principal component analysis: Exact recovery of corrupted lowrank matrices via convex optimization, in Advances in Neural Information Processing Systems, 2009, 20802088.

[26]

X. Yuan and J. Yang, Sparse and lowrank matrix decomposition via alternating direction methods, preprint, 12 (2009).

[27]

C.H. Zhang, Nearly unbiased variable selection under minimax concave penalty, The Annals of Statistics, 38 (2010), 894942.
doi: 10.1214/09AOS729.
