
-
Previous Article
Automatic segmentation of the femur and tibia bones from X-ray images based on pure dilated residual U-Net
- IPI Home
- This Issue
-
Next Article
Limited-angle CT reconstruction with generalized shrinkage operators as regularizers
RWRM: Residual Wasserstein regularization model for image restoration
a. | School of Mathematics and Statistics, Xidian University, Xi'an 710126, China |
b. | Department of Mathematics, Xinzhou Teachers University, Xinzhou 034000, China |
Existing image restoration methods mostly make full use of various image prior information. However, they rarely exploit the potential of residual histograms, especially their role as ensemble regularization constraint. In this paper, we propose a residual Wasserstein regularization model (RWRM), in which a residual histogram constraint is subtly embedded into a type of variational minimization problems. Specifically, utilizing the Wasserstein distance from the optimal transport theory, this scheme is achieved by enforcing the observed image residual histogram as close as possible to the reference residual histogram. Furthermore, the RWRM unifies the residual Wasserstein regularization and image prior regularization to improve image restoration performance. The robustness of parameter selection in the RWRM makes the proposed algorithms easier to implement. Finally, extensive experiments have confirmed that our RWRM applied to Gaussian denoising and non-blind deconvolution is effective.
References:
[1] |
E. J Candes and T Tao,
Near-optimal signal recovery from random projections: Universal encoding strategies?, IEEE Transactions on Information Theory, 52 (2006), 5406-5425.
doi: 10.1109/TIT.2006.885507. |
[2] |
A. Chambolle,
An algorithm for total variation minimization and applications, Journal of Mathematical Imaging and Vision, 20 (2004), 89-97.
|
[3] |
T. S. Cho, C. L. Zitnick, N. Joshi, S. B. Kang, R. Szeliski and W. T. Freeman,
Image restoration by matching gradient distributions, IEEE Transactions on Pattern Analysis and Machine Intelligence, 34 (2012), 683-694.
doi: 10.1109/TPAMI.2011.166. |
[4] |
P. L Combettes and V. Wajs,
Signal recovery by proximal forward-backward splitting, Multiscale Modeling and Simulation, 4 (2005), 1168-1200.
doi: 10.1137/050626090. |
[5] |
K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian,
Image denoising by sparse 3-d transform-domain collaborative filtering, IEEE Transactions on image processing, 16 (2007), 2080-2095.
doi: 10.1109/TIP.2007.901238. |
[6] |
W. Dong, L. Zhang, G. Shi and X. Li,
Nonlocally centralized sparse representation for image restoration, IEEE Transactions on Image Processing, 22 (2013), 1620-1630.
doi: 10.1109/TIP.2012.2235847. |
[7] |
D. L. Donoho,
Compressed sensing, IEEE Transactions on Information Theory, 52 (2006), 1289-1306.
doi: 10.1109/TIT.2006.871582. |
[8] |
M. Elad and M. Aharon,
Image denoising via sparse and redundant representations over learned dictionaries, IEEE Transactions on Image processing, 15 (2006), 3736-3745.
doi: 10.1109/TIP.2006.881969. |
[9] |
M. El Gheche, J.-F. Aujol, Y. Berthoumieu and C.-A. Deledalle, Texture reconstruction guided by the histogram of a high-resolution patch, IEEE Trans. Image Process, 26 (2017), 549-560.
doi: 10.1109/TIP.2016.2627812. |
[10] |
W. Feller, An Introduction to Probability Theory and Its Applications Ⅱ, John Wiley & Sons, 1968. |
[11] |
A. L. Gibbs,
Convergence in the wasserstein metric for markov chain monte carlo algorithms with applications to image restoration, Stochastic Models, 20 (2004), 473-492.
doi: 10.1081/STM-200033117. |
[12] |
G. Gilboa and S. Osher,
Nonlocal operators with applications to image processing, Multiscale Modeling and Simulation, 7 (2008), 1005-1028.
doi: 10.1137/070698592. |
[13] |
R. C. Gonzalez, R. E Woods and S. L Eddins, Digital Image Processing Using MATLAB, Prentice Hall Press, 2007.
![]() |
[14] |
S. Harmeling, C. J. Schuler and H. C. Burger, Image denoising: Can plain neural networks compete with bm3d?, In IEEE Conference on Computer Vision and Pattern Recognition, (2012), 2392-2399. |
[15] |
R. He, X. Feng, W. Wang, X. Zhu and Ch unyu Yang,
W-ldmm: A wasserstein driven low-dimensional manifold model for noisy image restoration, Neurocomputing, 371 (2020), 108-123.
doi: 10.1016/j.neucom.2019.08.088. |
[16] |
D. J. Heeger and J. R. Bergen, Pyramid-based texture analysis/synthesis, In International Conference on Image Processing, 1995. Proceedings, (1995), 229-238. |
[17] |
V. Jain and H. Sebastian Seung, Natural image denoising with convolutional networks, In International Conference on Neural Information Processing Systems, (2008), 769-776. |
[18] |
D. Krishnan and R. Fergus, Fast image deconvolution using hyper-laplacian priors, In International Conference on Neural Information Processing Systems, (2009), 1033-1041. |
[19] |
X. Lan, S. Roth, D. Huttenlocher and M. J Black, Efficient belief propagation with learned higher-order markov random fields, In European Conference on Computer Vision, pages 269-282. Springer, 2006.
doi: 10.1007/11744047_21. |
[20] |
S. Z. Li, Markov Random Field Modeling in Image Analysis, Springer-Verlag London, Ltd., London, 2009. |
[21] |
Y. Lou, X. Zhang, S. Osher and A. Bertozzi,
Image recovery via nonlocal operators, Journal of Scientific Computing, 42 (2010), 185-197.
doi: 10.1007/s10915-009-9320-2. |
[22] |
J. Mairal, M. Elad and G. Sapiro,
Sparse representation for color image restoration, IEEE Transactions on Image Processing, 17 (2008), 53-69.
doi: 10.1109/TIP.2007.911828. |
[23] |
S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, Inc., San Diego, CA, 1998.
![]() ![]() |
[24] |
X. Mei, W. Dong, B. G. Hu and S. Lyu, Unihist: A unified framework for image restoration with marginal histogram constraints, In Computer Vision and Pattern Recognition, pages 3753-3761, 2015. |
[25] |
S. Osher, M. Burger, D. Goldfarb, J. Xu and W. Yin,
An iterative regularization method for total variation-based image restoration, Multiscale Modeling and Simulation, 4 (2005), 460-489.
doi: 10.1137/040605412. |
[26] |
O. Pele and M. Werman, Fast and robust earth mover's distances, In IEEE International Conference on Computer Vision, (2010), 460-467.
doi: 10.1109/ICCV.2009.5459199. |
[27] |
G. Peyré, J. Fadili and J. Rabin, Wasserstein active contours, In IEEE International Conference on Image Processing, (2013), 2541-2544. |
[28] |
J. Portilla, V. Strela, M. J. Wainwright and E. P. Simoncelli,
Image denoising using scale mixtures of gaussians in the wavelet domain, IEEE Transactions on Image Processing, 12 (2003), 1338-1351.
doi: 10.1109/TIP.2003.818640. |
[29] |
J. Rabin and G. Peyré, Wasserstein regularization of imaging problem, In IEEE International Conference on Image Processing, (2011), 1541-1544, .
doi: 10.1109/ICIP.2011.6115740. |
[30] |
A. Rajwade, A. Rangarajan and A. Banerjee,
Image denoising using the higher order singular value decomposition, IEEE Transactions on Pattern Analysis and Machine Intelligence, 35 (2012), 849-862.
|
[31] |
W. H. Richardson,
Bayesian-based iterative method of image restoration, Journal of the Optical Society of America, 62 (1972), 55-59.
doi: 10.1364/JOSA.62.000055. |
[32] |
Y. Romano, M. Protter and M. Elad,
Single image interpolation via adaptive nonlocal sparsity-based modeling, IEEE Transactions on Image Processing, 23 (2014), 3085-3098.
doi: 10.1109/TIP.2014.2325774. |
[33] |
L. I. Rudin, S. Osher and E. Fatemi,
Nonlinear total variation based noise removal algorithms, Eleventh International Conference of the Center for Nonlinear Studies on Experimental Mathematics: Computational Issues in Nonlinear Science. Phys. D, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F. |
[34] |
O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier and F. Lenzen, Variational Methods in Imaging, Springer, 2009. |
[35] |
U. Schmidt, Q. Gao and S. Roth, A generative perspective on mrfs in low-level vision, In Computer Vision and Pattern Recognition, 2010, pages 1751-1758.
doi: 10.1109/CVPR.2010.5539844. |
[36] |
O. Stanley, Z. Shi and W. Zhu,
Low dimensional manifold model for image processing, SIAM Journal on Imaging Sciences, 10 (2017), 1669-1690.
doi: 10.1137/16M1058686. |
[37] |
D. Strong and T. Chan,
Edge-preserving and scale-dependent properties of total variation regularization, Inverse Problems, 19 (2003), 165-187.
doi: 10.1088/0266-5611/19/6/059. |
[38] |
K. Suzuki, I. Horiba and N. Sugie,
Efficient approximation of neural filters for removing quantum noise from images, IEEE Transactions on Signal Processing, 50 (2002), 1787-1799.
doi: 10.1109/TSP.2002.1011218. |
[39] |
P. Swoboda and C. Schnorr,
Convex variational image restoration with histogram priors, SIAM Journal on Imaging Sciences, 6 (2013), 1719-1735.
doi: 10.1137/120897535. |
[40] |
G. Tartavel, G. Peyré and Y. Gousseau,
Wasserstein loss for image synthesis and restoration, SIAM Journal on Imaging Sciences, 9 (2016), 1726-1755.
doi: 10.1137/16M1067494. |
[41] |
F. Thaler, K. Hammernik, C. Payer, M. Urschler and D. Stern, Sparse-view ct reconstruction using wasserstein gans, 2018, pages 75-82.
doi: 10.1007/978-3-030-00129-2_9. |
[42] |
M. Vauhkonen, D. Vadasz, P. A. Karjalainen, E. Somersalo and J. P. Kaipio,
Tikhonov regularization and prior information in electrical impedance tomography, IEEE Transactions on Medical Imaging, 17 (1998), 285-93.
doi: 10.1109/42.700740. |
[43] |
C. Villani, Optimal Transport: Old and New, volume 338, Springer-Verlag, Berlin, 2009
doi: 10.1007/978-3-540-71050-9. |
[44] |
Y. Weiss and W. T. Freeman, What makes a good model of natural images?, In 2007 IEEE Conference on Computer Vision and Pattern Recognition, (2007) pages 1-8.
doi: 10.1109/CVPR.2007.383092. |
[45] |
O. J. Woodford, C. Rother and V. Kolmogorov, A global perspective on map inference for low-level vision, In IEEE International Conference on Computer Vision, 2009, pages 2319-2326.
doi: 10.1109/ICCV.2009.5459434. |
[46] |
F. Wu, B. Wang, D. Cui and L. Li, Single image super-resolution based on wasserstein gans, Chinese Control Conference (CCC), 2018.
doi: 10.23919/ChiCC.2018.8484039. |
[47] |
Q. Yang, P. Yan, Y. Zhang, H. Yu, Y. Shi, X. Mou, M. K. Kalra, Y. Zhang, L. Sun and G. Wang,
Low-dose ct image denoising using a generative adversarial network with wasserstein distance and perceptual loss, IEEE Transactions on Medical Imaging, 37 (2018), 1348-1357.
doi: 10.1109/TMI.2018.2827462. |
[48] |
K. Zhang, W. Zuo, S. Gu and L. Zhang, Learning deep cnn denoiser prior for image restoration, 2017, pages 2808-2817.
doi: 10.1109/CVPR.2017.300. |
[49] |
W. Zuo, L. Zhang, C. Song, D. Zhang and H. Gao,
Gradient histogram estimation and preservation for texture enhanced image denoising, IEEE Transactions on Image Processing, 23 (2014), 2459-2472.
doi: 10.1109/TIP.2014.2316423. |
show all references
References:
[1] |
E. J Candes and T Tao,
Near-optimal signal recovery from random projections: Universal encoding strategies?, IEEE Transactions on Information Theory, 52 (2006), 5406-5425.
doi: 10.1109/TIT.2006.885507. |
[2] |
A. Chambolle,
An algorithm for total variation minimization and applications, Journal of Mathematical Imaging and Vision, 20 (2004), 89-97.
|
[3] |
T. S. Cho, C. L. Zitnick, N. Joshi, S. B. Kang, R. Szeliski and W. T. Freeman,
Image restoration by matching gradient distributions, IEEE Transactions on Pattern Analysis and Machine Intelligence, 34 (2012), 683-694.
doi: 10.1109/TPAMI.2011.166. |
[4] |
P. L Combettes and V. Wajs,
Signal recovery by proximal forward-backward splitting, Multiscale Modeling and Simulation, 4 (2005), 1168-1200.
doi: 10.1137/050626090. |
[5] |
K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian,
Image denoising by sparse 3-d transform-domain collaborative filtering, IEEE Transactions on image processing, 16 (2007), 2080-2095.
doi: 10.1109/TIP.2007.901238. |
[6] |
W. Dong, L. Zhang, G. Shi and X. Li,
Nonlocally centralized sparse representation for image restoration, IEEE Transactions on Image Processing, 22 (2013), 1620-1630.
doi: 10.1109/TIP.2012.2235847. |
[7] |
D. L. Donoho,
Compressed sensing, IEEE Transactions on Information Theory, 52 (2006), 1289-1306.
doi: 10.1109/TIT.2006.871582. |
[8] |
M. Elad and M. Aharon,
Image denoising via sparse and redundant representations over learned dictionaries, IEEE Transactions on Image processing, 15 (2006), 3736-3745.
doi: 10.1109/TIP.2006.881969. |
[9] |
M. El Gheche, J.-F. Aujol, Y. Berthoumieu and C.-A. Deledalle, Texture reconstruction guided by the histogram of a high-resolution patch, IEEE Trans. Image Process, 26 (2017), 549-560.
doi: 10.1109/TIP.2016.2627812. |
[10] |
W. Feller, An Introduction to Probability Theory and Its Applications Ⅱ, John Wiley & Sons, 1968. |
[11] |
A. L. Gibbs,
Convergence in the wasserstein metric for markov chain monte carlo algorithms with applications to image restoration, Stochastic Models, 20 (2004), 473-492.
doi: 10.1081/STM-200033117. |
[12] |
G. Gilboa and S. Osher,
Nonlocal operators with applications to image processing, Multiscale Modeling and Simulation, 7 (2008), 1005-1028.
doi: 10.1137/070698592. |
[13] |
R. C. Gonzalez, R. E Woods and S. L Eddins, Digital Image Processing Using MATLAB, Prentice Hall Press, 2007.
![]() |
[14] |
S. Harmeling, C. J. Schuler and H. C. Burger, Image denoising: Can plain neural networks compete with bm3d?, In IEEE Conference on Computer Vision and Pattern Recognition, (2012), 2392-2399. |
[15] |
R. He, X. Feng, W. Wang, X. Zhu and Ch unyu Yang,
W-ldmm: A wasserstein driven low-dimensional manifold model for noisy image restoration, Neurocomputing, 371 (2020), 108-123.
doi: 10.1016/j.neucom.2019.08.088. |
[16] |
D. J. Heeger and J. R. Bergen, Pyramid-based texture analysis/synthesis, In International Conference on Image Processing, 1995. Proceedings, (1995), 229-238. |
[17] |
V. Jain and H. Sebastian Seung, Natural image denoising with convolutional networks, In International Conference on Neural Information Processing Systems, (2008), 769-776. |
[18] |
D. Krishnan and R. Fergus, Fast image deconvolution using hyper-laplacian priors, In International Conference on Neural Information Processing Systems, (2009), 1033-1041. |
[19] |
X. Lan, S. Roth, D. Huttenlocher and M. J Black, Efficient belief propagation with learned higher-order markov random fields, In European Conference on Computer Vision, pages 269-282. Springer, 2006.
doi: 10.1007/11744047_21. |
[20] |
S. Z. Li, Markov Random Field Modeling in Image Analysis, Springer-Verlag London, Ltd., London, 2009. |
[21] |
Y. Lou, X. Zhang, S. Osher and A. Bertozzi,
Image recovery via nonlocal operators, Journal of Scientific Computing, 42 (2010), 185-197.
doi: 10.1007/s10915-009-9320-2. |
[22] |
J. Mairal, M. Elad and G. Sapiro,
Sparse representation for color image restoration, IEEE Transactions on Image Processing, 17 (2008), 53-69.
doi: 10.1109/TIP.2007.911828. |
[23] |
S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, Inc., San Diego, CA, 1998.
![]() ![]() |
[24] |
X. Mei, W. Dong, B. G. Hu and S. Lyu, Unihist: A unified framework for image restoration with marginal histogram constraints, In Computer Vision and Pattern Recognition, pages 3753-3761, 2015. |
[25] |
S. Osher, M. Burger, D. Goldfarb, J. Xu and W. Yin,
An iterative regularization method for total variation-based image restoration, Multiscale Modeling and Simulation, 4 (2005), 460-489.
doi: 10.1137/040605412. |
[26] |
O. Pele and M. Werman, Fast and robust earth mover's distances, In IEEE International Conference on Computer Vision, (2010), 460-467.
doi: 10.1109/ICCV.2009.5459199. |
[27] |
G. Peyré, J. Fadili and J. Rabin, Wasserstein active contours, In IEEE International Conference on Image Processing, (2013), 2541-2544. |
[28] |
J. Portilla, V. Strela, M. J. Wainwright and E. P. Simoncelli,
Image denoising using scale mixtures of gaussians in the wavelet domain, IEEE Transactions on Image Processing, 12 (2003), 1338-1351.
doi: 10.1109/TIP.2003.818640. |
[29] |
J. Rabin and G. Peyré, Wasserstein regularization of imaging problem, In IEEE International Conference on Image Processing, (2011), 1541-1544, .
doi: 10.1109/ICIP.2011.6115740. |
[30] |
A. Rajwade, A. Rangarajan and A. Banerjee,
Image denoising using the higher order singular value decomposition, IEEE Transactions on Pattern Analysis and Machine Intelligence, 35 (2012), 849-862.
|
[31] |
W. H. Richardson,
Bayesian-based iterative method of image restoration, Journal of the Optical Society of America, 62 (1972), 55-59.
doi: 10.1364/JOSA.62.000055. |
[32] |
Y. Romano, M. Protter and M. Elad,
Single image interpolation via adaptive nonlocal sparsity-based modeling, IEEE Transactions on Image Processing, 23 (2014), 3085-3098.
doi: 10.1109/TIP.2014.2325774. |
[33] |
L. I. Rudin, S. Osher and E. Fatemi,
Nonlinear total variation based noise removal algorithms, Eleventh International Conference of the Center for Nonlinear Studies on Experimental Mathematics: Computational Issues in Nonlinear Science. Phys. D, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F. |
[34] |
O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier and F. Lenzen, Variational Methods in Imaging, Springer, 2009. |
[35] |
U. Schmidt, Q. Gao and S. Roth, A generative perspective on mrfs in low-level vision, In Computer Vision and Pattern Recognition, 2010, pages 1751-1758.
doi: 10.1109/CVPR.2010.5539844. |
[36] |
O. Stanley, Z. Shi and W. Zhu,
Low dimensional manifold model for image processing, SIAM Journal on Imaging Sciences, 10 (2017), 1669-1690.
doi: 10.1137/16M1058686. |
[37] |
D. Strong and T. Chan,
Edge-preserving and scale-dependent properties of total variation regularization, Inverse Problems, 19 (2003), 165-187.
doi: 10.1088/0266-5611/19/6/059. |
[38] |
K. Suzuki, I. Horiba and N. Sugie,
Efficient approximation of neural filters for removing quantum noise from images, IEEE Transactions on Signal Processing, 50 (2002), 1787-1799.
doi: 10.1109/TSP.2002.1011218. |
[39] |
P. Swoboda and C. Schnorr,
Convex variational image restoration with histogram priors, SIAM Journal on Imaging Sciences, 6 (2013), 1719-1735.
doi: 10.1137/120897535. |
[40] |
G. Tartavel, G. Peyré and Y. Gousseau,
Wasserstein loss for image synthesis and restoration, SIAM Journal on Imaging Sciences, 9 (2016), 1726-1755.
doi: 10.1137/16M1067494. |
[41] |
F. Thaler, K. Hammernik, C. Payer, M. Urschler and D. Stern, Sparse-view ct reconstruction using wasserstein gans, 2018, pages 75-82.
doi: 10.1007/978-3-030-00129-2_9. |
[42] |
M. Vauhkonen, D. Vadasz, P. A. Karjalainen, E. Somersalo and J. P. Kaipio,
Tikhonov regularization and prior information in electrical impedance tomography, IEEE Transactions on Medical Imaging, 17 (1998), 285-93.
doi: 10.1109/42.700740. |
[43] |
C. Villani, Optimal Transport: Old and New, volume 338, Springer-Verlag, Berlin, 2009
doi: 10.1007/978-3-540-71050-9. |
[44] |
Y. Weiss and W. T. Freeman, What makes a good model of natural images?, In 2007 IEEE Conference on Computer Vision and Pattern Recognition, (2007) pages 1-8.
doi: 10.1109/CVPR.2007.383092. |
[45] |
O. J. Woodford, C. Rother and V. Kolmogorov, A global perspective on map inference for low-level vision, In IEEE International Conference on Computer Vision, 2009, pages 2319-2326.
doi: 10.1109/ICCV.2009.5459434. |
[46] |
F. Wu, B. Wang, D. Cui and L. Li, Single image super-resolution based on wasserstein gans, Chinese Control Conference (CCC), 2018.
doi: 10.23919/ChiCC.2018.8484039. |
[47] |
Q. Yang, P. Yan, Y. Zhang, H. Yu, Y. Shi, X. Mou, M. K. Kalra, Y. Zhang, L. Sun and G. Wang,
Low-dose ct image denoising using a generative adversarial network with wasserstein distance and perceptual loss, IEEE Transactions on Medical Imaging, 37 (2018), 1348-1357.
doi: 10.1109/TMI.2018.2827462. |
[48] |
K. Zhang, W. Zuo, S. Gu and L. Zhang, Learning deep cnn denoiser prior for image restoration, 2017, pages 2808-2817.
doi: 10.1109/CVPR.2017.300. |
[49] |
W. Zuo, L. Zhang, C. Song, D. Zhang and H. Gao,
Gradient histogram estimation and preservation for texture enhanced image denoising, IEEE Transactions on Image Processing, 23 (2014), 2459-2472.
doi: 10.1109/TIP.2014.2316423. |


















Images | Airfield | Lena | Peppers | Plane | Couple | Girl | Lake | Boat | Lolo | Martha | Avg. |
TV-L2 | 25.55 | 29.23 | 28.70 | 28.02 | 31.49 | 29.91 | 27.19 | 27.92 | 25.52 | 29.44 | 28.30 |
0.6689 | 0.7410 | 0.7233 | 0.7198 | 0.8300 | 0.7502 | 0.7129 | 0.7136 | 0.6212 | 0.7458 | 0.7227 | |
RWRM | 26.55 | 30.16 | 30.47 | 29.60 | 32.28 | 31.02 | 27.90 | 28.71 | 26.90 | 30.74 | 29.43 |
0.7008 | 0.8183 | 0.8070 | 0.8361 | 0.8515 | 0.8244 | 0.7635 | 0.7990 | 0.7500 | 0.8195 | 0.7970 |
Images | Airfield | Lena | Peppers | Plane | Couple | Girl | Lake | Boat | Lolo | Martha | Avg. |
TV-L2 | 25.55 | 29.23 | 28.70 | 28.02 | 31.49 | 29.91 | 27.19 | 27.92 | 25.52 | 29.44 | 28.30 |
0.6689 | 0.7410 | 0.7233 | 0.7198 | 0.8300 | 0.7502 | 0.7129 | 0.7136 | 0.6212 | 0.7458 | 0.7227 | |
RWRM | 26.55 | 30.16 | 30.47 | 29.60 | 32.28 | 31.02 | 27.90 | 28.71 | 26.90 | 30.74 | 29.43 |
0.7008 | 0.8183 | 0.8070 | 0.8361 | 0.8515 | 0.8244 | 0.7635 | 0.7990 | 0.7500 | 0.8195 | 0.7970 |
Methods | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Avg. | |
BM3D | 24.77 | 23.33 | 29.95 | 23.36 | 27.43 | 24.80 | 23.27 | 27.81 | 25.59 | |
0.488 | 0.472 | 0.793 | 0.455 | 0.604 | 0.549 | 0.519 | 0.687 | 0.571 | ||
NCSR | 24.62 | 23.25 | 29.57 | 23.23 | 27.05 | 24.66 | 23.04 | 27.61 | 25.38 | |
0.466 | 0.460 | 0.804 | 0.440 | 0.589 | 0.539 | 0.494 | 0.690 | 0.560 | ||
GHP | 24.74 | 23.32 | 29.49 | 23.32 | 27.18 | 24.71 | 23.17 | 27.59 | 25.44 | |
0.486 | 0.479 | 0.790 | 0.458 | 0.598 | 0.548 | 0.512 | 0.683 | 0.569 | ||
RWRM | 24.75 | 23.25 | 29.58 | 23.27 | 27.48 | 24.75 | 23.00 | 27.88 | 25.50 | |
0.490 | 0.481 | 0.793 | 0.463 | 0.602 | 0.535 | 0.505 | 0.691 | 0.570 | ||
BM3D | 24.37 | 22.93 | 29.26 | 23.03 | 26.97 | 24.43 | 22.84 | 27.34 | 25.15 | |
0.461 | 0.444 | 0.777 | 0.432 | 0.586 | 0.530 | 0.493 | 0.670 | 0.549 | ||
NCSR | 24.24 | 22.83 | 28.99 | 22.85 | 26.60 | 24.25 | 22.56 | 27.13 | 24.93 | |
0.439 | 0.426 | 0.794 | 0.410 | 0.572 | 0.517 | 0.464 | 0.678 | 0.538 | ||
GHP | 24.35 | 22.89 | 28.93 | 22.93 | 26.75 | 24.31 | 22.65 | 27.12 | 24.99 | |
0.461 | 0.446 | 0.775 | 0.428 | 0.582 | 0.524 | 0.480 | 0.667 | 0.545 | ||
RWRM | 24.36 | 22.90 | 29.07 | 22.94 | 27.10 | 24.42 | 22.55 | 27.51 | 25.11 | |
0.464 | 0.451 | 0.788 | 0.437 | 0.588 | 0.518 | 0.481 | 0.681 | 0.551 | ||
BM3D | 24.04 | 22.59 | 28.66 | 22.75 | 26.61 | 24.11 | 22.47 | 26.92 | 24.77 | |
0.441 | 0.421 | 0.763 | 0.414 | 0.572 | 0.513 | 0.472 | 0.655 | 0.531 | ||
NCSR | 23.92 | 22.47 | 28.52 | 22.55 | 26.22 | 23.91 | 22.17 | 26.70 | 24.56 | |
0.419 | 0.400 | 0.785 | 0.388 | 0.559 | 0.501 | 0.441 | 0.667 | 0.520 | ||
GHP | 24.02 | 22.52 | 28.46 | 22.61 | 26.36 | 23.96 | 22.23 | 26.66 | 24.60 | |
0.440 | 0.421 | 0.763 | 0.408 | 0.567 | 0.508 | 0.457 | 0.651 | 0.527 | ||
RWRM | 24.10 | 22.53 | 28.66 | 22.67 | 26.80 | 24.14 | 22.17 | 27.18 | 24.78 | |
0.445 | 0.428 | 0.782 | 0.416 | 0.576 | 0.504 | 0.458 | 0.672 | 0.535 | ||
BM3D | 23.75 | 22.32 | 28.12 | 22.49 | 26.30 | 23.81 | 22.15 | 26.48 | 24.43 | |
0.423 | 0.403 | 0.751 | 0.397 | 0.559 | 0.498 | 0.454 | 0.640 | 0.516 | ||
NCSR | 23.65 | 22.16 | 28.10 | 22.29 | 25.88 | 23.62 | 21.82 | 26.30 | 24.23 | |
0.404 | 0.379 | 0.778 | 0.372 | 0.548 | 0.489 | 0.422 | 0.658 | 0.506 | ||
GHP | 23.68 | 22.15 | 27.99 | 22.29 | 25.97 | 23.65 | 21.72 | 26.21 | 24.21 | |
0.424 | 0.398 | 0.750 | 0.390 | 0.554 | 0.493 | 0.430 | 0.636 | 0.509 | ||
RWRM | 23.84 | 22.21 | 28.27 | 22.40 | 26.53 | 23.90 | 21.87 | 26.87 | 24.49 | |
0.435 | 0.410 | 0.775 | 0.402 | 0.567 | 0.493 | 0.437 | 0.666 | 0.523 | ||
BM3D | 23.48 | 22.07 | 27.69 | 22.27 | 26.00 | 23.55 | 21.85 | 26.16 | 24.13 | |
0.409 | 0.388 | 0.738 | 0.387 | 0.548 | 0.487 | 0.437 | 0.627 | 0.503 | ||
NCSR | 23.43 | 21.89 | 27.71 | 22.05 | 25.58 | 23.35 | 21.50 | 25.92 | 23.93 | |
0.392 | 0.362 | 0.771 | 0.360 | 0.539 | 0.479 | 0.406 | 0.649 | 0.495 | ||
GHP | 23.35 | 21.71 | 27.47 | 21.93 | 25.56 | 23.26 | 21.22 | 25.69 | 23.77 | |
0.408 | 0.374 | 0.735 | 0.374 | 0.537 | 0.476 | 0.407 | 0.616 | 0.491 | ||
RWRM | 23.64 | 22.00 | 28.00 | 22.20 | 26.32 | 23.67 | 21.60 | 26.61 | 24.26 | |
0.421 | 0.392 | 0.766 | 0.385 | 0.560 | 0.484 | 0.419 | 0.660 | 0.511 |
Methods | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Avg. | |
BM3D | 24.77 | 23.33 | 29.95 | 23.36 | 27.43 | 24.80 | 23.27 | 27.81 | 25.59 | |
0.488 | 0.472 | 0.793 | 0.455 | 0.604 | 0.549 | 0.519 | 0.687 | 0.571 | ||
NCSR | 24.62 | 23.25 | 29.57 | 23.23 | 27.05 | 24.66 | 23.04 | 27.61 | 25.38 | |
0.466 | 0.460 | 0.804 | 0.440 | 0.589 | 0.539 | 0.494 | 0.690 | 0.560 | ||
GHP | 24.74 | 23.32 | 29.49 | 23.32 | 27.18 | 24.71 | 23.17 | 27.59 | 25.44 | |
0.486 | 0.479 | 0.790 | 0.458 | 0.598 | 0.548 | 0.512 | 0.683 | 0.569 | ||
RWRM | 24.75 | 23.25 | 29.58 | 23.27 | 27.48 | 24.75 | 23.00 | 27.88 | 25.50 | |
0.490 | 0.481 | 0.793 | 0.463 | 0.602 | 0.535 | 0.505 | 0.691 | 0.570 | ||
BM3D | 24.37 | 22.93 | 29.26 | 23.03 | 26.97 | 24.43 | 22.84 | 27.34 | 25.15 | |
0.461 | 0.444 | 0.777 | 0.432 | 0.586 | 0.530 | 0.493 | 0.670 | 0.549 | ||
NCSR | 24.24 | 22.83 | 28.99 | 22.85 | 26.60 | 24.25 | 22.56 | 27.13 | 24.93 | |
0.439 | 0.426 | 0.794 | 0.410 | 0.572 | 0.517 | 0.464 | 0.678 | 0.538 | ||
GHP | 24.35 | 22.89 | 28.93 | 22.93 | 26.75 | 24.31 | 22.65 | 27.12 | 24.99 | |
0.461 | 0.446 | 0.775 | 0.428 | 0.582 | 0.524 | 0.480 | 0.667 | 0.545 | ||
RWRM | 24.36 | 22.90 | 29.07 | 22.94 | 27.10 | 24.42 | 22.55 | 27.51 | 25.11 | |
0.464 | 0.451 | 0.788 | 0.437 | 0.588 | 0.518 | 0.481 | 0.681 | 0.551 | ||
BM3D | 24.04 | 22.59 | 28.66 | 22.75 | 26.61 | 24.11 | 22.47 | 26.92 | 24.77 | |
0.441 | 0.421 | 0.763 | 0.414 | 0.572 | 0.513 | 0.472 | 0.655 | 0.531 | ||
NCSR | 23.92 | 22.47 | 28.52 | 22.55 | 26.22 | 23.91 | 22.17 | 26.70 | 24.56 | |
0.419 | 0.400 | 0.785 | 0.388 | 0.559 | 0.501 | 0.441 | 0.667 | 0.520 | ||
GHP | 24.02 | 22.52 | 28.46 | 22.61 | 26.36 | 23.96 | 22.23 | 26.66 | 24.60 | |
0.440 | 0.421 | 0.763 | 0.408 | 0.567 | 0.508 | 0.457 | 0.651 | 0.527 | ||
RWRM | 24.10 | 22.53 | 28.66 | 22.67 | 26.80 | 24.14 | 22.17 | 27.18 | 24.78 | |
0.445 | 0.428 | 0.782 | 0.416 | 0.576 | 0.504 | 0.458 | 0.672 | 0.535 | ||
BM3D | 23.75 | 22.32 | 28.12 | 22.49 | 26.30 | 23.81 | 22.15 | 26.48 | 24.43 | |
0.423 | 0.403 | 0.751 | 0.397 | 0.559 | 0.498 | 0.454 | 0.640 | 0.516 | ||
NCSR | 23.65 | 22.16 | 28.10 | 22.29 | 25.88 | 23.62 | 21.82 | 26.30 | 24.23 | |
0.404 | 0.379 | 0.778 | 0.372 | 0.548 | 0.489 | 0.422 | 0.658 | 0.506 | ||
GHP | 23.68 | 22.15 | 27.99 | 22.29 | 25.97 | 23.65 | 21.72 | 26.21 | 24.21 | |
0.424 | 0.398 | 0.750 | 0.390 | 0.554 | 0.493 | 0.430 | 0.636 | 0.509 | ||
RWRM | 23.84 | 22.21 | 28.27 | 22.40 | 26.53 | 23.90 | 21.87 | 26.87 | 24.49 | |
0.435 | 0.410 | 0.775 | 0.402 | 0.567 | 0.493 | 0.437 | 0.666 | 0.523 | ||
BM3D | 23.48 | 22.07 | 27.69 | 22.27 | 26.00 | 23.55 | 21.85 | 26.16 | 24.13 | |
0.409 | 0.388 | 0.738 | 0.387 | 0.548 | 0.487 | 0.437 | 0.627 | 0.503 | ||
NCSR | 23.43 | 21.89 | 27.71 | 22.05 | 25.58 | 23.35 | 21.50 | 25.92 | 23.93 | |
0.392 | 0.362 | 0.771 | 0.360 | 0.539 | 0.479 | 0.406 | 0.649 | 0.495 | ||
GHP | 23.35 | 21.71 | 27.47 | 21.93 | 25.56 | 23.26 | 21.22 | 25.69 | 23.77 | |
0.408 | 0.374 | 0.735 | 0.374 | 0.537 | 0.476 | 0.407 | 0.616 | 0.491 | ||
RWRM | 23.64 | 22.00 | 28.00 | 22.20 | 26.32 | 23.67 | 21.60 | 26.61 | 24.26 | |
0.421 | 0.392 | 0.766 | 0.385 | 0.560 | 0.484 | 0.419 | 0.660 | 0.511 |
Methods | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
RWRM | 25.76 | 24.38 | 30.74 | 24.30 | 28.50 | 25.71 | 24.28 | 28.88 | |
0.5612 | 0.5609 | 0.8095 | 0.5510 | 0.6468 | 0.5914 | 0.5947 | 0.7204 | ||
LDCNN | 26.14 | 24.83 | 31.58 | 24.81 | 28.66 | 26.05 | 24.92 | 29.24 | |
0.6104 | 0.6141 | 0.8342 | 0.6043 | 0.6625 | 0.6419 | 0.6457 | 0.7424 | ||
RWRM | 25.06 | 23.66 | 30.11 | 23.64 | 27.92 | 25.15 | 23.51 | 28.31 | |
0.4914 | 0.4893 | 0.8013 | 0.4781 | 0.6176 | 0.5570 | 0.5402 | 0.7012 | ||
LDCNN | 25.47 | 24.09 | 30.90 | 24.12 | 28.07 | 25.45 | 24.17 | 28.55 | |
0.5522 | 0.5520 | 0.8178 | 0.5415 | 0.6330 | 0.5994 | 0.5894 | 0.7132 |
Methods | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
RWRM | 25.76 | 24.38 | 30.74 | 24.30 | 28.50 | 25.71 | 24.28 | 28.88 | |
0.5612 | 0.5609 | 0.8095 | 0.5510 | 0.6468 | 0.5914 | 0.5947 | 0.7204 | ||
LDCNN | 26.14 | 24.83 | 31.58 | 24.81 | 28.66 | 26.05 | 24.92 | 29.24 | |
0.6104 | 0.6141 | 0.8342 | 0.6043 | 0.6625 | 0.6419 | 0.6457 | 0.7424 | ||
RWRM | 25.06 | 23.66 | 30.11 | 23.64 | 27.92 | 25.15 | 23.51 | 28.31 | |
0.4914 | 0.4893 | 0.8013 | 0.4781 | 0.6176 | 0.5570 | 0.5402 | 0.7012 | ||
LDCNN | 25.47 | 24.09 | 30.90 | 24.12 | 28.07 | 25.45 | 24.17 | 28.55 | |
0.5522 | 0.5520 | 0.8178 | 0.5415 | 0.6330 | 0.5994 | 0.5894 | 0.7132 |
Images | Plane | Goldhill | Couple | Peppers | Martha | Boat | Girl | Lena | Bacteria | Brain | Avg. |
TV-L2 | 24.07 | 25.89 | 27.81 | 25.70 | 24.89 | 24.43 | 27.12 | 24.19 | 27.77 | 28.20 | 26.01 |
RWRM | 24.80 | 26.36 | 28.30 | 26.57 | 25.89 | 24.94 | 27.89 | 24.82 | 28.37 | 28.69 | 26.66 |
Images | Plane | Goldhill | Couple | Peppers | Martha | Boat | Girl | Lena | Bacteria | Brain | Avg. |
TV-L2 | 24.07 | 25.89 | 27.81 | 25.70 | 24.89 | 24.43 | 27.12 | 24.19 | 27.77 | 28.20 | 26.01 |
RWRM | 24.80 | 26.36 | 28.30 | 26.57 | 25.89 | 24.94 | 27.89 | 24.82 | 28.37 | 28.69 | 26.66 |
Images | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Avg. |
NL- |
25.64 | 30.17 | 26.48 | 27.11 | 26.03 | 26.36 | 26.47 | 25.30 | 26.70 |
0.7800 | 0.8218 | 0.7982 | 0.7600 | 0.8481 | 0.8044 | 0.8785 | 0.7999 | 0.8114 | |
NL-TV | 25.83 | 29.91 | 26.42 | 26.95 | 26.74 | 26.41 | 27.40 | 25.50 | 26.90 |
0.7752 | 0.8209 | 0.7944 | 0.7649 | 0.8504 | 0.8048 | 0.8631 | 0.7972 | 0.8089 | |
RWRM | 26.24 | 30.95 | 26.83 | 27.88 | 27.98 | 26.90 | 28.24 | 26.32 | 27.67 |
0.7993 | 0.8358 | 0.8096 | 0.7800 | 0.8707 | 0.8148 | 0.8599 | 0.8217 | 0.8240 |
Images | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Avg. |
NL- |
25.64 | 30.17 | 26.48 | 27.11 | 26.03 | 26.36 | 26.47 | 25.30 | 26.70 |
0.7800 | 0.8218 | 0.7982 | 0.7600 | 0.8481 | 0.8044 | 0.8785 | 0.7999 | 0.8114 | |
NL-TV | 25.83 | 29.91 | 26.42 | 26.95 | 26.74 | 26.41 | 27.40 | 25.50 | 26.90 |
0.7752 | 0.8209 | 0.7944 | 0.7649 | 0.8504 | 0.8048 | 0.8631 | 0.7972 | 0.8089 | |
RWRM | 26.24 | 30.95 | 26.83 | 27.88 | 27.98 | 26.90 | 28.24 | 26.32 | 27.67 |
0.7993 | 0.8358 | 0.8096 | 0.7800 | 0.8707 | 0.8148 | 0.8599 | 0.8217 | 0.8240 |
[1] |
Michael Hintermüller, Tao Wu. Bilevel optimization for calibrating point spread functions in blind deconvolution. Inverse Problems and Imaging, 2015, 9 (4) : 1139-1169. doi: 10.3934/ipi.2015.9.1139 |
[2] |
Lekbir Afraites, Aissam Hadri, Amine Laghrib, Mourad Nachaoui. A non-convex denoising model for impulse and Gaussian noise mixture removing using bi-level parameter identification. Inverse Problems and Imaging, 2022, 16 (4) : 827-870. doi: 10.3934/ipi.2022001 |
[3] |
Amine Laghrib, Lekbir Afraites, Aissam Hadri, Mourad Nachaoui. A non-convex PDE-constrained denoising model for impulse and Gaussian noise mixture reduction. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022031 |
[4] |
Xing Huang, Feng-Yu Wang. Mckean-Vlasov sdes with drifts discontinuous under wasserstein distance. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1667-1679. doi: 10.3934/dcds.2020336 |
[5] |
Zheng Dai, I.G. Rosen, Chuming Wang, Nancy Barnett, Susan E. Luczak. Using drinking data and pharmacokinetic modeling to calibrate transport model and blind deconvolution based data analysis software for transdermal alcohol biosensors. Mathematical Biosciences & Engineering, 2016, 13 (5) : 911-934. doi: 10.3934/mbe.2016023 |
[6] |
Qing Ma, Yanjun Wang. Distributionally robust chance constrained svm model with $\ell_2$-Wasserstein distance. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021212 |
[7] |
Yoon Mo Jung, Taeuk Jeong, Sangwoon Yun. Non-convex TV denoising corrupted by impulse noise. Inverse Problems and Imaging, 2017, 11 (4) : 689-702. doi: 10.3934/ipi.2017032 |
[8] |
Wei Wan, Weihong Guo, Jun Liu, Haiyang Huang. Non-local blind hyperspectral image super-resolution via 4d sparse tensor factorization and low-rank. Inverse Problems and Imaging, 2020, 14 (2) : 339-361. doi: 10.3934/ipi.2020015 |
[9] |
Max-Olivier Hongler. Mean-field games and swarms dynamics in Gaussian and non-Gaussian environments. Journal of Dynamics and Games, 2020, 7 (1) : 1-20. doi: 10.3934/jdg.2020001 |
[10] |
Mengli Hao, Ting Gao, Jinqiao Duan, Wei Xu. Non-Gaussian dynamics of a tumor growth system with immunization. Inverse Problems and Imaging, 2013, 7 (3) : 697-716. doi: 10.3934/ipi.2013.7.697 |
[11] |
Hongjun Gao, Fei Liang. On the stochastic beam equation driven by a Non-Gaussian Lévy process. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1027-1045. doi: 10.3934/dcdsb.2014.19.1027 |
[12] |
Brittany Froese Hamfeldt. Convergent approximation of non-continuous surfaces of prescribed Gaussian curvature. Communications on Pure and Applied Analysis, 2018, 17 (2) : 671-707. doi: 10.3934/cpaa.2018036 |
[13] |
Antonio De Rosa, Domenico Angelo La Manna. A non local approximation of the Gaussian perimeter: Gamma convergence and Isoperimetric properties. Communications on Pure and Applied Analysis, 2021, 20 (5) : 2101-2116. doi: 10.3934/cpaa.2021059 |
[14] |
Arjuna Flenner, Gary A. Hewer, Charles S. Kenney. Two dimensional histogram analysis using the Helmholtz principle. Inverse Problems and Imaging, 2008, 2 (4) : 485-525. doi: 10.3934/ipi.2008.2.485 |
[15] |
Mourad Nachaoui, Lekbir Afraites, Aissam Hadri, Amine Laghrib. A non-convex non-smooth bi-level parameter learning for impulse and Gaussian noise mixture removing. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1249-1291. doi: 10.3934/cpaa.2022018 |
[16] |
Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386 |
[17] |
Kamil Otal, Ferruh Özbudak. Explicit constructions of some non-Gabidulin linear maximum rank distance codes. Advances in Mathematics of Communications, 2016, 10 (3) : 589-600. doi: 10.3934/amc.2016028 |
[18] |
Michael Kiermaier, Reinhard Laue. Derived and residual subspace designs. Advances in Mathematics of Communications, 2015, 9 (1) : 105-115. doi: 10.3934/amc.2015.9.105 |
[19] |
Sari Lasanen. Non-Gaussian statistical inverse problems. Part II: Posterior convergence for approximated unknowns. Inverse Problems and Imaging, 2012, 6 (2) : 267-287. doi: 10.3934/ipi.2012.6.267 |
[20] |
Thierry Goudon, Martin Parisot. Non--local macroscopic models based on Gaussian closures for the Spizer-Härm regime. Kinetic and Related Models, 2011, 4 (3) : 735-766. doi: 10.3934/krm.2011.4.735 |
2021 Impact Factor: 1.483
Tools
Metrics
Other articles
by authors
[Back to Top]