In this paper, we investigate the interior transmission eigenvalue problem for elastic waves propagating outside a sound-soft or a sound-hard obstacle surrounded by an anisotropic layer. This study is motivated by the inverse problem of identifying an object embedded in an inhomogeneous media in the presence of elastic waves. Our analysis of this non-selfadjoint eigenvalue problem relies on the weak formulation of involved boundary value problems and some fundamental tools in functional analysis.
Citation: |
[1] |
C. Bellis, F. Cakoni and B. B. Guzina, Nature of the transmission eigenvalue spectrum for elastic bodies, IMA J. Appl. Math., 78 (2013), 895-923.
doi: 10.1093/imamat/hxr070.![]() ![]() ![]() |
[2] |
C. Bellis and B. B. Guzina, On the existence and uniqueness of a solution to the interior transmission problem for piecewise-homogeneous solids, J. Elasticity, 101 (2010), 29-57.
doi: 10.1007/s10659-010-9242-0.![]() ![]() ![]() |
[3] |
E. Blåsten, L. Päivärinta and J. Sylvester, Corners always scatter, Comm. Math. Phys., 331 (2014), 725-753.
doi: 10.1007/s00220-014-2030-0.![]() ![]() ![]() |
[4] |
A. S. Bonnet-Ben Dhia, L. Chesnel and H. Haddar, On the use of T -coercivity to study the interior transmission eigenvalue problem, C. R. Math. Acad. Sci. Paris, 349 (2011), 647-651.
doi: 10.1016/j.crma.2011.05.008.![]() ![]() ![]() |
[5] |
F. Cakoni, D. Colton and H. Haddar, On the determination of Dirichlet or transmission eigenvalues from far field data, C.R. Acad. Sci. Paris., 348 (2010), 379-383.
doi: 10.1016/j.crma.2010.02.003.![]() ![]() ![]() |
[6] |
F. Cakoni, A. Cossonnière and H. Haddar, Transmission eigenvalues for inhomogeneous media containing obstacles, Inverse Probl. Imaging, 6 (2012), 373-398.
doi: 10.3934/ipi.2012.6.373.![]() ![]() ![]() |
[7] |
F. Cakoni, D. Colton and H. Haddar, Inverse Scattering Theory and Transmission Eigenvalues, CBMS-NSF Regional Conference Series in Applied Mathematics, 88. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2016.
doi: 10.1137/1.9781611974461.ch1.![]() ![]() ![]() |
[8] |
F. Cakoni, D. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010), 237-255.
doi: 10.1137/090769338.![]() ![]() ![]() |
[9] |
A. Charalambopoulos, On the interior transmission problem in nondissipative, inhomogeneous, anisotropic elasticity, J. Elasticity, 67 (2002), 149-170.
doi: 10.1023/A:1023958030304.![]() ![]() ![]() |
[10] |
A. Charalambopoulos and K. A. Anagnostopoulos, On the spectrum of the interior transmission problem in isotropic elasticity, J Elasticity, 90 (2008), 295-313.
doi: 10.1007/s10659-007-9146-9.![]() ![]() ![]() |
[11] |
A. Charalambopoulos, D. Gintides and K. Kiriaki, The linear sampling method for the transmission problem in three-dimensional linear elasticity, Inverse Probl., 18 (2002), 547-558.
doi: 10.1088/0266-5611/18/3/303.![]() ![]() ![]() |
[12] |
F. Cakoni and H. Haddar, On the existence of transmission eigenvalues in an inhomogeneous medium, Appl. Anal., 88 (2009), 475-493.
doi: 10.1080/00036810802713966.![]() ![]() ![]() |
[13] |
B. Davey, C.-L. Lin and J.-N. Wang, Strong unique continuation for the Lamé system with less regular coefficients, Math. Ann., (2020).
doi: 10.1007/s00208-020-02026-0.![]() ![]() |
[14] |
H. Diao, H. Liu and L. Wang, On generalized Holmgren's principle to the Lamé operator with applications to inverse elastic problems, Calc. Var., 59 (2020), Paper No. 179, 50 pp.
doi: 10.1007/s00526-020-01830-5.![]() ![]() ![]() |
[15] |
J. Elschner and G. Hu, Acoustic scattering from corners, edges and circular cones, Arch. Ration. Mech. Anal., 228 (2018), 653-690.
doi: 10.1007/s00205-017-1202-4.![]() ![]() ![]() |
[16] |
G. Giorgi and H. Haddar, Computing estimates of material properties from transmission eigenvalues, Inverse Problems, 28 (2012), 055009, 23 pp.
doi: 10.1088/0266-5611/28/5/055009.![]() ![]() ![]() |
[17] |
I. Harris, F. Cakoni and J. Sun, Transmission eigenvalues and non-destructive testing of anisotropic magnetic materials with voids, Inverse Problems, 30 (2014), 035016, 21pp.
doi: 10.1088/0266-5611/30/3/035016.![]() ![]() ![]() |
[18] |
G. Hu, M. Salo and E. V. Vesalainen, Shape identification in inverse medium scattering problems with a single far-field pattern, SIAM J. Math. Anal., 48 (2016), 152-165.
doi: 10.1137/15M1032958.![]() ![]() ![]() |
[19] |
X. Ji and H. Liu, On isotropic cloaking and interior transmission eigenvalue problems, European J. Appl. Math., 29 (2018), 253-280.
doi: 10.1017/S0956792517000110.![]() ![]() ![]() |
[20] |
A. Kirsch and L. Päivärinta, On recovering obstacles inside inhomogeneities, Math. Meth. Appl. Sci., 21 (1998), 619-651.
doi: 10.1002/(SICI)1099-1476(19980510)21:7<619::AID-MMA940>3.0.CO;2-P.![]() ![]() ![]() |
[21] |
C. Kenig and J.-N. Wang, Unique continuation for the elasticity system and a counterexample for second order elliptic systems, Harmonic Analysis, Partial Differential Equations, Complex Analysis, Banach Spaces, and Operator Theory, 4 (2016), 159-178.
doi: 10.1007/978-3-319-30961-3_10.![]() ![]() ![]() |
[22] |
A. Kirsch and A. Lechleiter, The inside-outside duality for scattering problems by inhomogeneous media, Inverse Problems, 29 (2013), 104011, 21pp.
doi: 10.1088/0266-5611/29/10/104011.![]() ![]() ![]() |
[23] |
J. Li, X. Li, H. Liu and Y. Wang, Electromagnetic interior transmission eigenvalue problem for inhomogeneous media containing obstacles and its applications to near cloaking, IMA Journal of Applied Mathematics, 82 (2017), 1013-1042.
doi: 10.1093/imamat/hxx022.![]() ![]() ![]() |
[24] |
C.-L. Lin, G. Nakamura, G. Uhlmann and J.-N. Wang, Quantitative strong unique continuation for the Lamé system with less regular coefficients, Methods Appl. Anal., 18 (2011), 85-92.
doi: 10.4310/MAA.2011.v18.n1.a5.![]() ![]() ![]() |
[25] |
C.-L. Lin and J.-N. Wang, Strong unique continuation for the Lamé system with Lipschitz coefficients, Math. Ann., 331 (2005), 611-629.
doi: 10.1007/s00208-004-0597-z.![]() ![]() ![]() |