• Previous Article
    Cauchy problem of non-homogenous stochastic heat equation and application to inverse random source problem
  • IPI Home
  • This Issue
  • Next Article
    Existence and stability of electromagnetic Stekloff eigenvalues with a trace class modification
doi: 10.3934/ipi.2021004

The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation

1. 

School of Mathematics and Statistics, Central China Normal University, Wuhan, 430079, China

* Corresponding author: Guozheng Yan

Received  June 2020 Revised  October 2020 Published  December 2020

Fund Project: The first author is supported by the Innovative Funding Project from Central China Normal University (Grant No. 2019CXZZ078). The second author is supported by the National Natural Science Foundation of China (Grant No. 11571132)

This paper considers the inverse elastic wave scattering by a bounded penetrable or impenetrable scatterer. We propose a novel technique to show that the elastic obstacle can be uniquely determined by its far-field pattern associated with all incident plane waves at a fixed frequency. In the first part of this paper, we establish the mixed reciprocity relation between the far-field pattern corresponding to special point sources and the scattered field corresponding to plane waves, and the mixed reciprocity relation is the key point to show the uniqueness results. In the second part, besides the mixed reciprocity relation, a priori estimates of solution to the transmission problem with boundary data in $ [L^{\mathrm{q}}(\partial\Omega)]^{3} $ ($ 1<\mathrm{q}<2 $) is deeply investigated by the integral equation method and also we have constructed a well-posed modified static interior transmission problem on a small domain to obtain the uniqueness result.

Citation: Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, doi: 10.3934/ipi.2021004
References:
[1]

A. Adams and J. F. Fournier, Sobolev Spaces, 2$^{nd}$ edition, Elsevier, Singapore, 2003.  Google Scholar

[2]

J. F. Ahner and G. C. Hsiao, A Neumann series representation for solutions to boundary value problems in dynamic elasticity, Quart. Appl. Math., 33 (1975/76), 73-80.  doi: 10.1090/qam/449124.  Google Scholar

[3]

J. F. Ahner and G. C. Hsiao, On the two-dimensional exterior boundary-value problems of elasticity, Siam J. Appl. Math., 31 (1976), 677-685.  doi: 10.1137/0131060.  Google Scholar

[4]

K. A. Anagnostopoulos and A. Charalambopoulos, The linear sampling method for the transmission problem in 2D anisotropic elasticity, Inverse Problems, 22 (2006), 553-577.  doi: 10.1088/0266-5611/22/2/011.  Google Scholar

[5]

T. Arens, Linear sampling methods for 2D inverse elastic wave scattering, Inverse Problems, 17 (2001), 1445-1464.  doi: 10.1088/0266-5611/17/5/314.  Google Scholar

[6]

A. Charalambopoulos, On the interior transmission problem in nondissipative, inhomogeneous, anisotropic elasticity, J. Elasticity, 67 (2002), 149-170.  doi: 10.1023/A:1023958030304.  Google Scholar

[7]

A. Charalambopoulos and K. A. Anagnostopoulos, On the spectrum of the interior transmission problem in isotropic elasticity, J. Elasticity, 90 (2008), 295-313.  doi: 10.1007/s10659-007-9146-9.  Google Scholar

[8]

A. CharalambopoulosA. KirschK. A. AnagnostopoulosD. Gintides and K. Kiriaki, The factorization method in inverse elastic scattering from penetrable bodies, Inverse Problems, 23 (2006), 27-51.  doi: 10.1088/0266-5611/23/1/002.  Google Scholar

[9]

D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, Wiley, New York, 1983.  Google Scholar

[10]

D. Colton and R. Kress, Using fundamental solutions in inverse scattering, Inverse Problems, 22 (2006), 49-66.  doi: 10.1088/0266-5611/22/3/R01.  Google Scholar

[11]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 4$^{th}$ edition, Springer Nature Switzerland AG, 2019. doi: 10.1007/978-3-030-30351-8.  Google Scholar

[12]

D. Colton and B. D. Sleeman, Uniqueness theorems for the inverse problem of acoustic scattering, IMA J. Appl. Math., 31 (1983), 253-259.  doi: 10.1093/imamat/31.3.253.  Google Scholar

[13]

H. A. Diao, H. Y. Liu and L. Wang, On generalized Holmgren's principle to the Lamé operator with applications to inverse elastic problems, Calculus of Variations and Partial Differential Equations, in press, 59 (2020), Paper No. 179, 50 pp. doi: 10.1007/s00526-020-01830-5.  Google Scholar

[14]

J. Elschner and M. Yamamoto, Uniqueness in inverse elastic scattering with finitely many incident waves, Inverse Problems, 26 (2010), 045005, 8pp. doi: 10.1088/0266-5611/26/4/045005.  Google Scholar

[15]

T. Gerlach and R. Kress, Uniqueness in inverse obstacle scattering with conductive boundary condition, Inverse Problems, 12 (1996), 619-625.  doi: 10.1088/0266-5611/12/5/006.  Google Scholar

[16]

D. Gintides, Local uniqueness for the inverse scattering problem in acoustics via the Faber-Krahn inequality, Inverse Problems, 21 (2005), 1195-1205.  doi: 10.1088/0266-5611/21/4/001.  Google Scholar

[17]

D. Gintides and L. Midrinos, Inverse scattering problem for a rigid scatterer or a cavity in elastodynamics, Zamm. J. Appl. Math. Mech., 91 (2011), 276-287.  doi: 10.1002/zamm.201000098.  Google Scholar

[18]

D. Gintides and M. Sini, Identification of obstacles using only the scatteres P-waves or the scattered S-waves, Inverse Probl. Imaging, 6 (2012), 39-55.  doi: 10.3934/ipi.2012.6.39.  Google Scholar

[19]

D. GintidesM. Sini and N. T. Thành, Detection of point-like scatterers using one type of scattered elastic waves, J. Comput. Appl. Math., 236 (2012), 2137-2145.  doi: 10.1016/j.cam.2011.09.036.  Google Scholar

[20]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2$^{nd}$ edition, Springer, New York, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[21]

P. Hähner and G. C. Hsiao, Uniqueness theorems in inverse obstacle scattering of elastic waves, Inverse Problems, 9 (1993), 525-534.  doi: 10.1088/0266-5611/9/5/002.  Google Scholar

[22]

G. H. Hu, A. Kirsch and M. Sini, Some inverse problems arising from elastic scattering by rigid obstacles, Inverse Problems, 29 (2013), 015009, 21pp. doi: 10.1088/0266-5611/29/1/015009.  Google Scholar

[23]

G. H. HuJ. Z. Li and H. Y. Liu, Recovering complex elastic scatterers by a single far-field pattern, J. Differential Equations, 257 (2014), 469-489.  doi: 10.1016/j.jde.2014.04.007.  Google Scholar

[24]

M. Kar and M. Sini, On the inverse elastic scattering by interfaces using one type of scattered waves, J. Elasticity, 118 (2015), 15-38.  doi: 10.1007/s10659-014-9474-5.  Google Scholar

[25]

A. Kirsch and R. Kress, Uniqueness in inverse obstacle scattering, Inverse Problems, 9 (1993), 285-299.  doi: 10.1088/0266-5611/9/2/009.  Google Scholar

[26]

R. Kress, Uniqueness and numerical methods in inverse obstacle scattering, J. Physics: Conference Series, 73 (2007), 012003. doi: 10.1088/1742-6596/73/1/012003.  Google Scholar

[27]

V. D. Kupradze, Potential Methods in the Theory of Elasticity, Jerusalem: Israeli Program for Scientific Translations, 1965.  Google Scholar

[28]

V. D. Kupradze, Three-dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, Amsterdam: North-Holland, 1979. Google Scholar

[29]

J. J. LaiH. Y. LiuJ. N. Xiao and Y. F. Xu, The decoupling of elastic waves from a weak formulation perspective, East Asian Journal on Applied Mathematics, 9 (2019), 241-251.  doi: 10.4208/eajam.080818.121018.  Google Scholar

[30]

P. D. Lax and R. S. Phillips, Scattering Theory, Pure and Applied Mathematics, Vol. 26 Academic Press, New York-London, 1967.  Google Scholar

[31]

H. Y. Liu and J. N. Xiao, Decoupling elastic waves and its applications, J. Differential Equations, 263 (2017), 4442-4480.  doi: 10.1016/j.jde.2017.05.022.  Google Scholar

[32]

H. Y. Liu and J. Zou, Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers, Inverse Problems, 22 (2006), 515-524.  doi: 10.1088/0266-5611/22/2/008.  Google Scholar

[33]

X. D. Liu and B. Zhang, Direct and inverse obstacle scattering problems in a piecewise homogeneous medium, SIAM J. Appl. Math., 70 (2010), 3105-3120.  doi: 10.1137/090777578.  Google Scholar

[34]

X. D. Liu and B. Zhang, Inverse scattering by an inhomogeneous penetrable obstacle in a piecewise homogeneous medium, Acta Math. Sci., 32B (2012), 1281-1297.  doi: 10.1016/S0252-9602(12)60099-X.  Google Scholar

[35]

X. D. Liu, B. Zhang and G. H. Hu, Uniqueness in the inverse scattering problem in a piecewise homogeneous medium, Inverse Problems, 26 (2010), 015002, 14pp. doi: 10.1088/0266-5611/26/1/015002.  Google Scholar

[36]

P. A. Martin, On the scattering of elastic waves by an elastic inclusion in two dimensions, Quar. J. Mech. Appl. Math., 43 (1990), 275-291.  doi: 10.1093/qjmam/43.3.275.  Google Scholar

[37]

R. Potthast, A point source method for inverse acoustic and electromagnetic obstacle scattering problems, IMA J. Appl. Math., 61 (1998), 119-140.  doi: 10.1093/imamat/61.2.119.  Google Scholar

[38]

R. Potthast, On the convergence of a new Newton-type method in inverse scattering, Inverse Problems, 17 (2001), 1419-1434.  doi: 10.1088/0266-5611/17/5/312.  Google Scholar

[39]

F. L. Qu, J. Q. Yang and B. Zhang, Recovering an elastic obstacle containing embedded objects by the acoustic far-field measurements, Inverse Problems, 34 (2018), 015002, 8pp. doi: 10.1088/1361-6420/aa9c26.  Google Scholar

[40]

A. G. Ramm, New method for proving uniqueness theorems for obstacle inverse scattering problems, Appl. Math. Lett., 6 (1993), 19-21.  doi: 10.1016/0893-9659(93)90071-T.  Google Scholar

[41]

A. G. Ramm, Research anouncement uniqueness theorems for inverse obstacle scattering problems in Lipschitz domains, Appl. Anal., 59 (1995), 337-383.  doi: 10.1080/00036819508840411.  Google Scholar

[42]

L. Rondi, E. Sincich and M. Sini, Stable determination of a rigid scatterer in elastodynamics, arXiv: 2007.06864v1. Google Scholar

[43]

P. Stefanov and G. Uhlmann, Local uniqueness for the fixed energy fixed angle inverse problem in obstacle scattering, Proc. Amer. Math. Soc, 132 (2004), 1351-1354.  doi: 10.1090/S0002-9939-03-07363-5.  Google Scholar

[44]

J. Q. YangB. Zhang and H. W. Zhang, Uniqueness in inverse acoustic and electromagnetic scattering by penetrable obstacles with embedded objects, J. Differential Equations, 265 (2018), 6352-6383.  doi: 10.1016/j.jde.2018.07.033.  Google Scholar

[45]

D. Y. Zhang and Y. K. Guo, Uniqueness results on phaseless inverse acoustic scattering with a reference ball, Inverse Problems, 34 (2018), 085002, 12pp. doi: 10.1088/1361-6420/aac53c.  Google Scholar

show all references

References:
[1]

A. Adams and J. F. Fournier, Sobolev Spaces, 2$^{nd}$ edition, Elsevier, Singapore, 2003.  Google Scholar

[2]

J. F. Ahner and G. C. Hsiao, A Neumann series representation for solutions to boundary value problems in dynamic elasticity, Quart. Appl. Math., 33 (1975/76), 73-80.  doi: 10.1090/qam/449124.  Google Scholar

[3]

J. F. Ahner and G. C. Hsiao, On the two-dimensional exterior boundary-value problems of elasticity, Siam J. Appl. Math., 31 (1976), 677-685.  doi: 10.1137/0131060.  Google Scholar

[4]

K. A. Anagnostopoulos and A. Charalambopoulos, The linear sampling method for the transmission problem in 2D anisotropic elasticity, Inverse Problems, 22 (2006), 553-577.  doi: 10.1088/0266-5611/22/2/011.  Google Scholar

[5]

T. Arens, Linear sampling methods for 2D inverse elastic wave scattering, Inverse Problems, 17 (2001), 1445-1464.  doi: 10.1088/0266-5611/17/5/314.  Google Scholar

[6]

A. Charalambopoulos, On the interior transmission problem in nondissipative, inhomogeneous, anisotropic elasticity, J. Elasticity, 67 (2002), 149-170.  doi: 10.1023/A:1023958030304.  Google Scholar

[7]

A. Charalambopoulos and K. A. Anagnostopoulos, On the spectrum of the interior transmission problem in isotropic elasticity, J. Elasticity, 90 (2008), 295-313.  doi: 10.1007/s10659-007-9146-9.  Google Scholar

[8]

A. CharalambopoulosA. KirschK. A. AnagnostopoulosD. Gintides and K. Kiriaki, The factorization method in inverse elastic scattering from penetrable bodies, Inverse Problems, 23 (2006), 27-51.  doi: 10.1088/0266-5611/23/1/002.  Google Scholar

[9]

D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, Wiley, New York, 1983.  Google Scholar

[10]

D. Colton and R. Kress, Using fundamental solutions in inverse scattering, Inverse Problems, 22 (2006), 49-66.  doi: 10.1088/0266-5611/22/3/R01.  Google Scholar

[11]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 4$^{th}$ edition, Springer Nature Switzerland AG, 2019. doi: 10.1007/978-3-030-30351-8.  Google Scholar

[12]

D. Colton and B. D. Sleeman, Uniqueness theorems for the inverse problem of acoustic scattering, IMA J. Appl. Math., 31 (1983), 253-259.  doi: 10.1093/imamat/31.3.253.  Google Scholar

[13]

H. A. Diao, H. Y. Liu and L. Wang, On generalized Holmgren's principle to the Lamé operator with applications to inverse elastic problems, Calculus of Variations and Partial Differential Equations, in press, 59 (2020), Paper No. 179, 50 pp. doi: 10.1007/s00526-020-01830-5.  Google Scholar

[14]

J. Elschner and M. Yamamoto, Uniqueness in inverse elastic scattering with finitely many incident waves, Inverse Problems, 26 (2010), 045005, 8pp. doi: 10.1088/0266-5611/26/4/045005.  Google Scholar

[15]

T. Gerlach and R. Kress, Uniqueness in inverse obstacle scattering with conductive boundary condition, Inverse Problems, 12 (1996), 619-625.  doi: 10.1088/0266-5611/12/5/006.  Google Scholar

[16]

D. Gintides, Local uniqueness for the inverse scattering problem in acoustics via the Faber-Krahn inequality, Inverse Problems, 21 (2005), 1195-1205.  doi: 10.1088/0266-5611/21/4/001.  Google Scholar

[17]

D. Gintides and L. Midrinos, Inverse scattering problem for a rigid scatterer or a cavity in elastodynamics, Zamm. J. Appl. Math. Mech., 91 (2011), 276-287.  doi: 10.1002/zamm.201000098.  Google Scholar

[18]

D. Gintides and M. Sini, Identification of obstacles using only the scatteres P-waves or the scattered S-waves, Inverse Probl. Imaging, 6 (2012), 39-55.  doi: 10.3934/ipi.2012.6.39.  Google Scholar

[19]

D. GintidesM. Sini and N. T. Thành, Detection of point-like scatterers using one type of scattered elastic waves, J. Comput. Appl. Math., 236 (2012), 2137-2145.  doi: 10.1016/j.cam.2011.09.036.  Google Scholar

[20]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2$^{nd}$ edition, Springer, New York, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[21]

P. Hähner and G. C. Hsiao, Uniqueness theorems in inverse obstacle scattering of elastic waves, Inverse Problems, 9 (1993), 525-534.  doi: 10.1088/0266-5611/9/5/002.  Google Scholar

[22]

G. H. Hu, A. Kirsch and M. Sini, Some inverse problems arising from elastic scattering by rigid obstacles, Inverse Problems, 29 (2013), 015009, 21pp. doi: 10.1088/0266-5611/29/1/015009.  Google Scholar

[23]

G. H. HuJ. Z. Li and H. Y. Liu, Recovering complex elastic scatterers by a single far-field pattern, J. Differential Equations, 257 (2014), 469-489.  doi: 10.1016/j.jde.2014.04.007.  Google Scholar

[24]

M. Kar and M. Sini, On the inverse elastic scattering by interfaces using one type of scattered waves, J. Elasticity, 118 (2015), 15-38.  doi: 10.1007/s10659-014-9474-5.  Google Scholar

[25]

A. Kirsch and R. Kress, Uniqueness in inverse obstacle scattering, Inverse Problems, 9 (1993), 285-299.  doi: 10.1088/0266-5611/9/2/009.  Google Scholar

[26]

R. Kress, Uniqueness and numerical methods in inverse obstacle scattering, J. Physics: Conference Series, 73 (2007), 012003. doi: 10.1088/1742-6596/73/1/012003.  Google Scholar

[27]

V. D. Kupradze, Potential Methods in the Theory of Elasticity, Jerusalem: Israeli Program for Scientific Translations, 1965.  Google Scholar

[28]

V. D. Kupradze, Three-dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, Amsterdam: North-Holland, 1979. Google Scholar

[29]

J. J. LaiH. Y. LiuJ. N. Xiao and Y. F. Xu, The decoupling of elastic waves from a weak formulation perspective, East Asian Journal on Applied Mathematics, 9 (2019), 241-251.  doi: 10.4208/eajam.080818.121018.  Google Scholar

[30]

P. D. Lax and R. S. Phillips, Scattering Theory, Pure and Applied Mathematics, Vol. 26 Academic Press, New York-London, 1967.  Google Scholar

[31]

H. Y. Liu and J. N. Xiao, Decoupling elastic waves and its applications, J. Differential Equations, 263 (2017), 4442-4480.  doi: 10.1016/j.jde.2017.05.022.  Google Scholar

[32]

H. Y. Liu and J. Zou, Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers, Inverse Problems, 22 (2006), 515-524.  doi: 10.1088/0266-5611/22/2/008.  Google Scholar

[33]

X. D. Liu and B. Zhang, Direct and inverse obstacle scattering problems in a piecewise homogeneous medium, SIAM J. Appl. Math., 70 (2010), 3105-3120.  doi: 10.1137/090777578.  Google Scholar

[34]

X. D. Liu and B. Zhang, Inverse scattering by an inhomogeneous penetrable obstacle in a piecewise homogeneous medium, Acta Math. Sci., 32B (2012), 1281-1297.  doi: 10.1016/S0252-9602(12)60099-X.  Google Scholar

[35]

X. D. Liu, B. Zhang and G. H. Hu, Uniqueness in the inverse scattering problem in a piecewise homogeneous medium, Inverse Problems, 26 (2010), 015002, 14pp. doi: 10.1088/0266-5611/26/1/015002.  Google Scholar

[36]

P. A. Martin, On the scattering of elastic waves by an elastic inclusion in two dimensions, Quar. J. Mech. Appl. Math., 43 (1990), 275-291.  doi: 10.1093/qjmam/43.3.275.  Google Scholar

[37]

R. Potthast, A point source method for inverse acoustic and electromagnetic obstacle scattering problems, IMA J. Appl. Math., 61 (1998), 119-140.  doi: 10.1093/imamat/61.2.119.  Google Scholar

[38]

R. Potthast, On the convergence of a new Newton-type method in inverse scattering, Inverse Problems, 17 (2001), 1419-1434.  doi: 10.1088/0266-5611/17/5/312.  Google Scholar

[39]

F. L. Qu, J. Q. Yang and B. Zhang, Recovering an elastic obstacle containing embedded objects by the acoustic far-field measurements, Inverse Problems, 34 (2018), 015002, 8pp. doi: 10.1088/1361-6420/aa9c26.  Google Scholar

[40]

A. G. Ramm, New method for proving uniqueness theorems for obstacle inverse scattering problems, Appl. Math. Lett., 6 (1993), 19-21.  doi: 10.1016/0893-9659(93)90071-T.  Google Scholar

[41]

A. G. Ramm, Research anouncement uniqueness theorems for inverse obstacle scattering problems in Lipschitz domains, Appl. Anal., 59 (1995), 337-383.  doi: 10.1080/00036819508840411.  Google Scholar

[42]

L. Rondi, E. Sincich and M. Sini, Stable determination of a rigid scatterer in elastodynamics, arXiv: 2007.06864v1. Google Scholar

[43]

P. Stefanov and G. Uhlmann, Local uniqueness for the fixed energy fixed angle inverse problem in obstacle scattering, Proc. Amer. Math. Soc, 132 (2004), 1351-1354.  doi: 10.1090/S0002-9939-03-07363-5.  Google Scholar

[44]

J. Q. YangB. Zhang and H. W. Zhang, Uniqueness in inverse acoustic and electromagnetic scattering by penetrable obstacles with embedded objects, J. Differential Equations, 265 (2018), 6352-6383.  doi: 10.1016/j.jde.2018.07.033.  Google Scholar

[45]

D. Y. Zhang and Y. K. Guo, Uniqueness results on phaseless inverse acoustic scattering with a reference ball, Inverse Problems, 34 (2018), 085002, 12pp. doi: 10.1088/1361-6420/aac53c.  Google Scholar

Figure 1.  Possible choice of $ x^{*} $
Figure 2.  Possible choice of $ x^{*} $
[1]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[2]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[3]

Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781

[4]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[5]

Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013

[6]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[7]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[8]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[9]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[10]

Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021

[11]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[12]

Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389

[13]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[14]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[15]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

[16]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[17]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[18]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[19]

Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329

[20]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (31)
  • HTML views (86)
  • Cited by (0)

Other articles
by authors

[Back to Top]