
-
Previous Article
LANTERN: Learn analysis transform network for dynamic magnetic resonance imaging
- IPI Home
- This Issue
-
Next Article
Automatic segmentation of the femur and tibia bones from X-ray images based on pure dilated residual U-Net
Nonlocal latent low rank sparse representation for single image super resolution via self-similarity learning
Zhongyuan University of Technology, School of Science, 450007 Zhengzhou, China |
In this paper, we propose a novel scheme for single image super resolution (SR) reconstruction. Firstly, we construct a new self-similarity framework by regarding the low resolution (LR) images as the low rank version of corresponding high resolution (HR) images. Subsequently, nuclear norm minimization (NNM) is employed to generate LR image pyramids from HR ones. The structure of our framework is beneficial to extract LR features, where we regard the quotient image, calculated between HR image and LR image at the same layer, as LR feature. This LR feature has the same dimension as LR image; however the dimension of commonly used gradient feature is 4 times than LR image. On the other hand, we employ nonlocal similar patch, within the same scale and across different scales, to generate HR and LR dictionaries. In the course of encoding, codes are calculated from both row and column of LR dictionary for each LR patch; at the same time, both low rank and sparse constraints on codes matrix give us a hand to remove coding noises. Finally, both quantitative and perceptual results demonstrate that our proposed method has a good SR performance.
References:
[1] |
J. Allebach and P. W. Wong, Edge-Directed Interpolation, International Conference on Image Processing IEEE, 1996.
doi: 10.1109/ICIP.1996.560768. |
[2] |
S. Baker and T. Kanade,
Limits on super-resolution and how to break them, IEEE Transactions on Pattern Analysis and Machine Intelligence, 24 (2002), 1167-1183.
doi: 10.1109/TPAMI.2002.1033210. |
[3] |
T. Chan, S. Esedoglu and A. Yip, Recent Developments in Total Variation Image Restoration, Mathematical Models of Computer Vision, 2011. |
[4] |
W. Dong, L. Zhang, G. Shi and Xin Li,
Nonlocally centralized sparse representation for image restoration, IEEE Transactions on Image Processing, 22 (2013), 1620-1630.
doi: 10.1109/TIP.2012.2235847. |
[5] |
W. Dong, L. Zhang and G. Shi, Centralized sparse representation for image restoration, International Conference on Computer Vision, 2011, 1259-1266. |
[6] |
W. Dong, L. Zhang, G. Shi and X. Wu,
Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization, IEEE Transactions on Image Processing, 20 (2011), 1838-1857.
doi: 10.1109/TIP.2011.2108306. |
[7] |
W. T. Freeman, T.R. Jones and E. C. Pasztor,
Example based super resolution, IEEE Computer Graphics and Applications, 22 (2012), 56-65.
doi: 10.1109/38.988747. |
[8] |
S. Gu, W. Zuo, Q. Xie, D. Meng, X. Feng and L. Zhang, Convolutional sparse coding for image super-resolution, International Conference on Computer Vision, (2015), 1823-1831.
doi: 10.1109/ICCV.2015.212. |
[9] |
S. Gu, Q. Xi, D. Meng, W. Zuo, X. Feng and L. Zhang,
Weighted nuclear norm minimization and its applications to low level vision, International Journal of Computer Vision, 121 (2017), 183-208.
doi: 10.1007/s11263-016-0930-5. |
[10] |
H. Chang, D.-Y. Yeung and Y. Xiong, Super-resolution through neighbor embedding, Computer Vision and Pattern Recognition, 2004,275-282.
doi: 10.1109/CVPR.2004.1315043. |
[11] |
R. G. Keys,
Cubic convolution interpolation for digital image processing, IEEE Transactions on Acoustics, Speech, and Signal Processing, 29 (1981), 1153-1160.
doi: 10.1109/TASSP.1981.1163711. |
[12] |
X. Li and M. T. Orchard,
New Edge-Directed interpolation, IEEE Transactions on Image Processing, 10 (2001), 1521-1527.
doi: 10.1109/83.951537. |
[13] |
Z. Lin and H.-Y. Shum,
Fundamental limits of reconstruction-based superresolution algorithms under local translation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 26 (2004), 83-97.
doi: 10.1109/TPAMI.2004.1261081. |
[14] |
Z. Lin, M. Chen and Y. Ma, The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices, arXiv: 1009.5055. |
[15] |
G. Liu and S. Yan, Latent low-rank representation for subspace segmentation and feature extraction, International Conference on Computer Vision, (2011), 1615-1622.
doi: 10.1109/ICCV.2011.6126422. |
[16] |
L. I. Rudin, S. Osher and E. Fatemi,
Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F. |
[17] |
J. Shi and C. Qi, Low-rank sparse representation for single image super-resolution via self-similarity learning, International Conference on Image Processing, (2016), 1424-1428.
doi: 10.1109/ICIP.2016.7532593. |
[18] |
J. A. Tropp and S. J. Wright,
Computational methods for sparse solution of linear inverse problems, Proceedings of the IEEE, 96 (2010), 948-958.
|
[19] |
S. L. Wang, D. Zhang and L. Yan, Semi-coupled dictionary learning with applications to image super-resolution and photo-sketch synthesis, Computer Vision and Pattern Recognition, (2012), 2216-2223. |
[20] |
H. Wang, S. Z. Li and Y. Wang, Face recognition under varying lighting conditions using self quotient image, IEEE International Conference on Automatic Face Gesture Recognition, (2004), 819-824. |
[21] |
J. Yang, J. Wright, T. S. Huang and Y. Ma,
Image super-resolution via sparse representation, IEEE Transactions on Image Processing, 19 (2010), 2861-2873.
doi: 10.1109/TIP.2010.2050625. |
[22] |
C.-Y. Yang, J.-B. Huang and M.-H. Yang, Exploiting self-similarities for single frame super-resolution, Asian Conference on Computer Vision, (2010), 497-510.
doi: 10.1007/978-3-642-19318-7_39. |
[23] |
G. Yu, G. Sapiro and S. Mallat,
Solving inverse problems with piecewise linear estimators:From Gaussian mixture models to structured sparsity, IEEE Transactions on Image Processing, 21 (2012), 2481-2499.
doi: 10.1109/TIP.2011.2176743. |
[24] |
T. Zhang, B. Ghanem, S. Liu, C. Xu and N. Ahuja, Low-rank sparse coding for image classification, International Conference on Computer Vision, (2013), 281-288.
doi: 10.1109/ICCV.2013.42. |
show all references
References:
[1] |
J. Allebach and P. W. Wong, Edge-Directed Interpolation, International Conference on Image Processing IEEE, 1996.
doi: 10.1109/ICIP.1996.560768. |
[2] |
S. Baker and T. Kanade,
Limits on super-resolution and how to break them, IEEE Transactions on Pattern Analysis and Machine Intelligence, 24 (2002), 1167-1183.
doi: 10.1109/TPAMI.2002.1033210. |
[3] |
T. Chan, S. Esedoglu and A. Yip, Recent Developments in Total Variation Image Restoration, Mathematical Models of Computer Vision, 2011. |
[4] |
W. Dong, L. Zhang, G. Shi and Xin Li,
Nonlocally centralized sparse representation for image restoration, IEEE Transactions on Image Processing, 22 (2013), 1620-1630.
doi: 10.1109/TIP.2012.2235847. |
[5] |
W. Dong, L. Zhang and G. Shi, Centralized sparse representation for image restoration, International Conference on Computer Vision, 2011, 1259-1266. |
[6] |
W. Dong, L. Zhang, G. Shi and X. Wu,
Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization, IEEE Transactions on Image Processing, 20 (2011), 1838-1857.
doi: 10.1109/TIP.2011.2108306. |
[7] |
W. T. Freeman, T.R. Jones and E. C. Pasztor,
Example based super resolution, IEEE Computer Graphics and Applications, 22 (2012), 56-65.
doi: 10.1109/38.988747. |
[8] |
S. Gu, W. Zuo, Q. Xie, D. Meng, X. Feng and L. Zhang, Convolutional sparse coding for image super-resolution, International Conference on Computer Vision, (2015), 1823-1831.
doi: 10.1109/ICCV.2015.212. |
[9] |
S. Gu, Q. Xi, D. Meng, W. Zuo, X. Feng and L. Zhang,
Weighted nuclear norm minimization and its applications to low level vision, International Journal of Computer Vision, 121 (2017), 183-208.
doi: 10.1007/s11263-016-0930-5. |
[10] |
H. Chang, D.-Y. Yeung and Y. Xiong, Super-resolution through neighbor embedding, Computer Vision and Pattern Recognition, 2004,275-282.
doi: 10.1109/CVPR.2004.1315043. |
[11] |
R. G. Keys,
Cubic convolution interpolation for digital image processing, IEEE Transactions on Acoustics, Speech, and Signal Processing, 29 (1981), 1153-1160.
doi: 10.1109/TASSP.1981.1163711. |
[12] |
X. Li and M. T. Orchard,
New Edge-Directed interpolation, IEEE Transactions on Image Processing, 10 (2001), 1521-1527.
doi: 10.1109/83.951537. |
[13] |
Z. Lin and H.-Y. Shum,
Fundamental limits of reconstruction-based superresolution algorithms under local translation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 26 (2004), 83-97.
doi: 10.1109/TPAMI.2004.1261081. |
[14] |
Z. Lin, M. Chen and Y. Ma, The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices, arXiv: 1009.5055. |
[15] |
G. Liu and S. Yan, Latent low-rank representation for subspace segmentation and feature extraction, International Conference on Computer Vision, (2011), 1615-1622.
doi: 10.1109/ICCV.2011.6126422. |
[16] |
L. I. Rudin, S. Osher and E. Fatemi,
Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F. |
[17] |
J. Shi and C. Qi, Low-rank sparse representation for single image super-resolution via self-similarity learning, International Conference on Image Processing, (2016), 1424-1428.
doi: 10.1109/ICIP.2016.7532593. |
[18] |
J. A. Tropp and S. J. Wright,
Computational methods for sparse solution of linear inverse problems, Proceedings of the IEEE, 96 (2010), 948-958.
|
[19] |
S. L. Wang, D. Zhang and L. Yan, Semi-coupled dictionary learning with applications to image super-resolution and photo-sketch synthesis, Computer Vision and Pattern Recognition, (2012), 2216-2223. |
[20] |
H. Wang, S. Z. Li and Y. Wang, Face recognition under varying lighting conditions using self quotient image, IEEE International Conference on Automatic Face Gesture Recognition, (2004), 819-824. |
[21] |
J. Yang, J. Wright, T. S. Huang and Y. Ma,
Image super-resolution via sparse representation, IEEE Transactions on Image Processing, 19 (2010), 2861-2873.
doi: 10.1109/TIP.2010.2050625. |
[22] |
C.-Y. Yang, J.-B. Huang and M.-H. Yang, Exploiting self-similarities for single frame super-resolution, Asian Conference on Computer Vision, (2010), 497-510.
doi: 10.1007/978-3-642-19318-7_39. |
[23] |
G. Yu, G. Sapiro and S. Mallat,
Solving inverse problems with piecewise linear estimators:From Gaussian mixture models to structured sparsity, IEEE Transactions on Image Processing, 21 (2012), 2481-2499.
doi: 10.1109/TIP.2011.2176743. |
[24] |
T. Zhang, B. Ghanem, S. Liu, C. Xu and N. Ahuja, Low-rank sparse coding for image classification, International Conference on Computer Vision, (2013), 281-288.
doi: 10.1109/ICCV.2013.42. |







patch size | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
time | 300 | 217 | 173 | 137 | 128 | 121 | 119 |
psnr | 30.236 | 30.228 | 30.226 | 30.199 | 30.199 | 30.198 | 30.194 |
ssim | 0.898 | 0.898 | 0.898 | 0.898 | 0.898 | 0.897 | 0.896 |
patch size | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
time | 300 | 217 | 173 | 137 | 128 | 121 | 119 |
psnr | 30.236 | 30.228 | 30.226 | 30.199 | 30.199 | 30.198 | 30.194 |
ssim | 0.898 | 0.898 | 0.898 | 0.898 | 0.898 | 0.897 | 0.896 |
Methods | lena | Child | butterfly | foreman | house | hat | bike | parrots | girl | pepper |
Bicubic | 29.469 | 30.741 | 24.140 | 32.186 | 29.005 | 29.205 | 22.801 | 27.998 | 33.718 | 30.939 |
0.908 | 0.909 | 0.824 | 0.907 | 0.840 | 0.833 | 0.705 | 0.883 | 0.846 | 0.941 | |
ScSR | 30.056 | 32.428 | 24.579 | 32.789 | 30.334 | 29.626 | 23.426 | 28.680 | 34.278 | 31.157 |
0.840 | 0.844 | 0.704 | 0.660 | 0.472 | 0.525 | 0.653 | 0.621 | 0.605 | 0.853 | |
LRSC | 29.758 | 30.753 | 24.133 | 32.709 | 29.319 | 29.446 | 23.016 | 28.357 | 34.066 | 30.926 |
0.912 | 0.904 | 0.831 | 0.913 | 0.845 | 0.842 | 0.718 | 0.891 | 0.851 | 0.942 | |
Our | 30.102 | 31.517 | 24.830 | 32.719 | 29.909 | 29.649 | 23.515 | 28.589 | 34.099 | 31.296 |
0.913 | 0.910 | 0.832 | 0.914 | 0.845 | 0.842 | 0.718 | 0.892 | 0.853 | 0.942 |
Methods | lena | Child | butterfly | foreman | house | hat | bike | parrots | girl | pepper |
Bicubic | 29.469 | 30.741 | 24.140 | 32.186 | 29.005 | 29.205 | 22.801 | 27.998 | 33.718 | 30.939 |
0.908 | 0.909 | 0.824 | 0.907 | 0.840 | 0.833 | 0.705 | 0.883 | 0.846 | 0.941 | |
ScSR | 30.056 | 32.428 | 24.579 | 32.789 | 30.334 | 29.626 | 23.426 | 28.680 | 34.278 | 31.157 |
0.840 | 0.844 | 0.704 | 0.660 | 0.472 | 0.525 | 0.653 | 0.621 | 0.605 | 0.853 | |
LRSC | 29.758 | 30.753 | 24.133 | 32.709 | 29.319 | 29.446 | 23.016 | 28.357 | 34.066 | 30.926 |
0.912 | 0.904 | 0.831 | 0.913 | 0.845 | 0.842 | 0.718 | 0.891 | 0.851 | 0.942 | |
Our | 30.102 | 31.517 | 24.830 | 32.719 | 29.909 | 29.649 | 23.515 | 28.589 | 34.099 | 31.296 |
0.913 | 0.910 | 0.832 | 0.914 | 0.845 | 0.842 | 0.718 | 0.892 | 0.853 | 0.942 |
Methods | lena | Child | butterfly | foreman | house | hat | bike | parrots | girl | pepper |
Bicubic | 28.913 | 30.432 | 24.320 | 32.814 | 30.213 | 29.921 | 23.411 | 28.536 | 33.685 | 29.901 |
0.933 | 0.933 | 0.894 | 0.947 | 0.912 | 0.896 | 0.804 | 0.927 | 0.900 | 0.963 | |
ScSR | 30.136 | 31.452 | 25.104 | 33.468 | 30.878 | 30.559 | 24.089 | 29.264 | 34.194 | 30.778 |
0.672 | 0.702 | 0.574 | 0.590 | 0.415 | 0.440 | 0.557 | 0.548 | 0.489 | 0.683 | |
LRSC | 29.054 | 30.753 | 24.466 | 33.203 | 30.387 | 30.381 | 23.411 | 28.408 | 33.915 | 29.897 |
0.938 | 0.904 | 0.894 | 0.940 | 0.915 | 0.902 | 0.801 | 0.931 | 0.901 | 0.963 | |
Our | 29.782 | 30.933 | 24.671 | 33.450 | 30.487 | 29.649 | 23.775 | 28.837 | 33.916 | 29.901 |
0.939 | 0.936 | 0.897 | 0.950 | 0.916 | 0.842 | 0.810 | 0.931 | 0.904 | 0.967 | |
The values in the cell are PSNR (dB) and SSIM from top to bottom. |
Methods | lena | Child | butterfly | foreman | house | hat | bike | parrots | girl | pepper |
Bicubic | 28.913 | 30.432 | 24.320 | 32.814 | 30.213 | 29.921 | 23.411 | 28.536 | 33.685 | 29.901 |
0.933 | 0.933 | 0.894 | 0.947 | 0.912 | 0.896 | 0.804 | 0.927 | 0.900 | 0.963 | |
ScSR | 30.136 | 31.452 | 25.104 | 33.468 | 30.878 | 30.559 | 24.089 | 29.264 | 34.194 | 30.778 |
0.672 | 0.702 | 0.574 | 0.590 | 0.415 | 0.440 | 0.557 | 0.548 | 0.489 | 0.683 | |
LRSC | 29.054 | 30.753 | 24.466 | 33.203 | 30.387 | 30.381 | 23.411 | 28.408 | 33.915 | 29.897 |
0.938 | 0.904 | 0.894 | 0.940 | 0.915 | 0.902 | 0.801 | 0.931 | 0.901 | 0.963 | |
Our | 29.782 | 30.933 | 24.671 | 33.450 | 30.487 | 29.649 | 23.775 | 28.837 | 33.916 | 29.901 |
0.939 | 0.936 | 0.897 | 0.950 | 0.916 | 0.842 | 0.810 | 0.931 | 0.904 | 0.967 | |
The values in the cell are PSNR (dB) and SSIM from top to bottom. |
Methods | lena | Child | butterfly | foreman | house | hat | bike | parrots | girl | pepper |
Bicubic | 25.059 | 26.557 | 22.790 | 26.795 | 25.980 | 25.726 | 22.918 | 25.262 | 27.138 | 26.470 |
0.594 | 0.593 | 0.615 | 0.506 | 0.484 | 0.444 | 0.550 | 0.497 | 0.476 | 0.598 | |
ScSR | 25.094 | 25.422 | 20.334 | 25.416 | 24.784 | 24.660 | 21.567 | 24.309 | 25.564 | 25.393 |
0.404 | 0.409 | 0.465 | 0.243 | 0.231 | 0.1778 | 0.428 | 0.234 | 0.214 | 0.404 | |
LRSC | 26.370 | 26.315 | 23.452 | 27.611 | 26.529 | 26.472 | 22.463 | 26.057 | 27.994 | 26.785 |
0.675 | 0.667 | 0.671 | 0.585 | 0.555 | 0.532 | 0.614 | 0.585 | 0.558 | 0.671 | |
WNNM | 25.774 | 25.941 | 22.937 | 27.275 | 27.819 | 25.632 | 27.635 | 25.463 | 27.866 | 25.798 |
0.621 | 0.653 | 0.658 | 0.576 | 0.569 | 0.523 | 0.564 | 0.534 | 0.545 | 0.579 | |
Our | 27.125 | 26.315 | 24.121 | 28.833 | 27.375 | 27.352 | 22.988 | 26.896 | 29.295 | 27.720 |
0.727 | 0.724 | 0.717 | 0.659 | 0.619 | 0.598 | 0.661 | 0.653 | 0.632 | 0.732 | |
The values in the cell are PSNR (dB) and SSIM from top to bottom. |
Methods | lena | Child | butterfly | foreman | house | hat | bike | parrots | girl | pepper |
Bicubic | 25.059 | 26.557 | 22.790 | 26.795 | 25.980 | 25.726 | 22.918 | 25.262 | 27.138 | 26.470 |
0.594 | 0.593 | 0.615 | 0.506 | 0.484 | 0.444 | 0.550 | 0.497 | 0.476 | 0.598 | |
ScSR | 25.094 | 25.422 | 20.334 | 25.416 | 24.784 | 24.660 | 21.567 | 24.309 | 25.564 | 25.393 |
0.404 | 0.409 | 0.465 | 0.243 | 0.231 | 0.1778 | 0.428 | 0.234 | 0.214 | 0.404 | |
LRSC | 26.370 | 26.315 | 23.452 | 27.611 | 26.529 | 26.472 | 22.463 | 26.057 | 27.994 | 26.785 |
0.675 | 0.667 | 0.671 | 0.585 | 0.555 | 0.532 | 0.614 | 0.585 | 0.558 | 0.671 | |
WNNM | 25.774 | 25.941 | 22.937 | 27.275 | 27.819 | 25.632 | 27.635 | 25.463 | 27.866 | 25.798 |
0.621 | 0.653 | 0.658 | 0.576 | 0.569 | 0.523 | 0.564 | 0.534 | 0.545 | 0.579 | |
Our | 27.125 | 26.315 | 24.121 | 28.833 | 27.375 | 27.352 | 22.988 | 26.896 | 29.295 | 27.720 |
0.727 | 0.724 | 0.717 | 0.659 | 0.619 | 0.598 | 0.661 | 0.653 | 0.632 | 0.732 | |
The values in the cell are PSNR (dB) and SSIM from top to bottom. |
[1] |
Duo Wang, Zheng-Fen Jin, Youlin Shang. A penalty decomposition method for nuclear norm minimization with l1 norm fidelity term. Evolution Equations and Control Theory, 2019, 8 (4) : 695-708. doi: 10.3934/eect.2019034 |
[2] |
Huiyuan Guo, Quan Yu, Xinzhen Zhang, Lulu Cheng. Low rank matrix minimization with a truncated difference of nuclear norm and Frobenius norm regularization. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022045 |
[3] |
Amine Laghrib, Abdelkrim Chakib, Aissam Hadri, Abdelilah Hakim. A nonlinear fourth-order PDE for multi-frame image super-resolution enhancement. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 415-442. doi: 10.3934/dcdsb.2019188 |
[4] |
Fatimzehrae Ait Bella, Aissam Hadri, Abdelilah Hakim, Amine Laghrib. A nonlocal Weickert type PDE applied to multi-frame super-resolution. Evolution Equations and Control Theory, 2021, 10 (3) : 633-655. doi: 10.3934/eect.2020084 |
[5] |
Liqun Qi, Shenglong Hu, Yanwei Xu. Spectral norm and nuclear norm of a third order tensor. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1101-1113. doi: 10.3934/jimo.2021010 |
[6] |
Wei Wan, Weihong Guo, Jun Liu, Haiyang Huang. Non-local blind hyperspectral image super-resolution via 4d sparse tensor factorization and low-rank. Inverse Problems and Imaging, 2020, 14 (2) : 339-361. doi: 10.3934/ipi.2020015 |
[7] |
Xavier Bresson, Tony F. Chan. Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Problems and Imaging, 2008, 2 (4) : 455-484. doi: 10.3934/ipi.2008.2.455 |
[8] |
Fan Jia, Xue-Cheng Tai, Jun Liu. Nonlocal regularized CNN for image segmentation. Inverse Problems and Imaging, 2020, 14 (5) : 891-911. doi: 10.3934/ipi.2020041 |
[9] |
Jie Huang, Xiaoping Yang, Yunmei Chen. A fast algorithm for global minimization of maximum likelihood based on ultrasound image segmentation. Inverse Problems and Imaging, 2011, 5 (3) : 645-657. doi: 10.3934/ipi.2011.5.645 |
[10] |
Yan Jin, Jürgen Jost, Guofang Wang. A new nonlocal variational setting for image processing. Inverse Problems and Imaging, 2015, 9 (2) : 415-430. doi: 10.3934/ipi.2015.9.415 |
[11] |
Yifu Feng, Min Zhang. A $p$-spherical section property for matrix Schatten-$p$ quasi-norm minimization. Journal of Industrial and Management Optimization, 2020, 16 (1) : 397-407. doi: 10.3934/jimo.2018159 |
[12] |
Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems and Imaging, 2021, 15 (3) : 475-498. doi: 10.3934/ipi.2021001 |
[13] |
Yonggui Zhu, Yuying Shi, Bin Zhang, Xinyan Yu. Weighted-average alternating minimization method for magnetic resonance image reconstruction based on compressive sensing. Inverse Problems and Imaging, 2014, 8 (3) : 925-937. doi: 10.3934/ipi.2014.8.925 |
[14] |
Haijuan Hu, Jacques Froment, Baoyan Wang, Xiequan Fan. Spatial-Frequency domain nonlocal total variation for image denoising. Inverse Problems and Imaging, 2020, 14 (6) : 1157-1184. doi: 10.3934/ipi.2020059 |
[15] |
Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Robustness of time-dependent attractors in H1-norm for nonlocal problems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1011-1036. doi: 10.3934/dcdsb.2018140 |
[16] |
Sepideh Mirrahimi. Adaptation and migration of a population between patches. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 753-768. doi: 10.3934/dcdsb.2013.18.753 |
[17] |
Shikun Wang. Dynamics of a chemostat system with two patches. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6261-6278. doi: 10.3934/dcdsb.2019138 |
[18] |
Ghislain Fourier, Gabriele Nebe. Degenerate flag varieties in network coding. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021027 |
[19] |
Chang-Yuan Cheng, Xingfu Zou. On predation effort allocation strategy over two patches. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1889-1915. doi: 10.3934/dcdsb.2020281 |
[20] |
Taoufik Hmidi, Joan Mateu. Bifurcation of rotating patches from Kirchhoff vortices. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5401-5422. doi: 10.3934/dcds.2016038 |
2020 Impact Factor: 1.639
Tools
Metrics
Other articles
by authors
[Back to Top]