October  2021, 15(5): 865-891. doi: 10.3934/ipi.2021020

On the identification of the nonlinearity parameter in the Westervelt equation from boundary measurements

1. 

Department of Mathematics, Alpen-Adria-Universität Klagenfurt, 9020 Klagenfurt, Austria

2. 

Department of Mathematics, Texas A&M University, Texas 77843, USA

* Corresponding author: Barbara Kaltenbacher

Received  August 2020 Revised  November 2020 Published  October 2021 Early access  February 2021

Fund Project: Supported by the Austrian Science Fund fwf under grant P30054 and the National Science Foundation through award dms-1620138

We consider an undetermined coefficient inverse problem for a nonlinear partial differential equation occurring in high intensity ultrasound propagation as used in acoustic tomography. In particular, we investigate the recovery of the nonlinearity coefficient commonly labeled as $ B/A $ in the literature which is part of a space dependent coefficient $ \kappa $ in the Westervelt equation governing nonlinear acoustics. Corresponding to the typical measurement setup, the overposed data consists of time trace measurements on some zero or one dimensional set $ \Sigma $ representing the receiving transducer array. After an analysis of the map from $ \kappa $ to the overposed data, we show injectivity of its linearisation and use this as motivation for several iterative schemes to recover $ \kappa $. Numerical simulations will also be shown to illustrate the efficiency of the methods.

Citation: Barbara Kaltenbacher, William Rundell. On the identification of the nonlinearity parameter in the Westervelt equation from boundary measurements. Inverse Problems & Imaging, 2021, 15 (5) : 865-891. doi: 10.3934/ipi.2021020
References:
[1]

A. B. Bakushinskiĭ, On a convergence problem of the iterative-regularised Gauss-Newton method, Comput. Math. Math. Phys., 32 (1992), 1353-1359.   Google Scholar

[2]

A. B. Bakushinskii, Remarks on choosing a regularisation parameter using the quasi-optimality and ratio criterion, USSR Comput. Math. Math. Phys., 24 (1984), 181-182.  doi: 10.1016/0041-5553(84)90253-2.  Google Scholar

[3]

L. Bjørnø, Characterization of biological media by means of their non-linearity, Ultrasonics, 24 (1986), 254-259.  doi: 10.1016/0041-624x(86)90102-2.  Google Scholar

[4]

D. T. Blackstock, Approximate equations governing finite-amplitude sound in thermoviscous fluids, Tech Report, GD/E Report, GD-1463-52, General Dynamics Corp., Rochester, NY, 1963. Google Scholar

[5]

B. BlaschkeA. Neubauer and O. Scherzer, On convergence rates for the iteratively regularised Gauss-Newton method, IMA J. Numer. Anal., 17 (1997), 421-436.  doi: 10.1093/imanum/17.3.421.  Google Scholar

[6]

J. M. Burgers, The Nonlinear Diffusion Equation, Springer, Netherlands, 1974. doi: 10.1007/978-94-010-1745-9.  Google Scholar

[7]

V. BurovI. GurinovichO. Rudenko and E. Tagunov, Reconstruction of the spatial distribution of the nonlinearity parameter and sound velocity in acoustic nonlinear tomography, Acoustical Physics, 40 (1994), 816-823.   Google Scholar

[8]

C. A. Cain, Ultrasonic reflection mode imaging of the nonlinear parameter B/A: A theoretical basis, IEEE 1985 Ultrasonics Symposium, San Francisco, CA, USA, 1985. doi: 10.1109/ULTSYM.1985.198640.  Google Scholar

[9]

C. Clason and A. Klassen, Quasi-solution of linear inverse problems in non-reflexive Banach spaces, J. Inverse Ill-Posed Probl., 26 (2018), 689-702.  doi: 10.1515/jiip-2018-0026.  Google Scholar

[10]

C. Clason and K. Kunisch, A duality-based approach to elliptic control problems in non-reflexive Banach spaces, ESAIM Control Optim. Calc. Var., 17 (2011), 243-266.  doi: 10.1051/cocv/2010003.  Google Scholar

[11]

D. G. Crighton, Model equations of nonlinear acoustics, Ann. Rev. Fluid Mech., 11 (1979), 11-33.  doi: 10.1146/annurev.fl.11.010179.000303.  Google Scholar

[12]

H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Mathematics and its Applications, 375, Kluwer Academic Publishers Group, Dordrecht, 1996.  Google Scholar

[13]

H. W. EnglK. Kunisch and A. Neubauer, Convergence rates for Tikhonov regularisation of non-linear ill-posed problems, Inverse Problems, 5 (1989), 523-540.  doi: 10.1088/0266-5611/5/4/007.  Google Scholar

[14]

L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 1998.  Google Scholar

[15]

M. F. Hamilton and D. T. Blackstock, Nonlinear Acoustics, Vol. 1, Academic Press, San Diego, 1998. Google Scholar

[16]

M. Hanke, A regularizing Levenberg–Marquardt scheme, with applications to inverse groundwater filtration problems, Inverse Problems, 13 (1997), 79-95.  doi: 10.1088/0266-5611/13/1/007.  Google Scholar

[17]

M. HankeA. Neubauer and O. Scherzer, A convergence analysis of the Landweber iteration for nonlinear ill-posed problems, Numer. Math., 72 (1995), 21-37.  doi: 10.1007/s002110050158.  Google Scholar

[18]

F. Hettlich and W. Rundell, A second degree method for nonlinear inverse problems, SIAM J. Numer. Anal., 37 (2000), 587-620.  doi: 10.1137/S0036142998341246.  Google Scholar

[19]

B. HofmannB. KaltenbacherC. Pöschl and O. Scherzer, A convergence rates result for Tikhonov regularisation in Banach spaces with non-smooth operators, Inverse Problems, 23 (2007), 987-1010.  doi: 10.1088/0266-5611/23/3/009.  Google Scholar

[20]

T. Hohage, Logarithmic convergence rates of the iteratively regularised Gauß-Newton method for an inverse potential and an inverse scattering problem, Inverse Problems, 13 (1997), 1279-1299.  doi: 10.1088/0266-5611/13/5/012.  Google Scholar

[21]

S. Hubmer and R. Ramlau, Nesterov's accelerated gradient method for nonlinear ill-posed problems with a locally convex residual functional, Inverse Problems, 34 (2018), 30pp. doi: 10.1088/1361-6420/aacebe.  Google Scholar

[22]

N. IchidaT. Sato and M. Linzer, Imaging the nonlinear ultrasonic parameter of a medium, Ultrasonic Imaging, 5 (1983), 295-299.  doi: 10.1177/016173468300500401.  Google Scholar

[23]

O. Y. Imanuvilov and M. Yamamoto, Carleman estimate and an inverse source problem for the Kelvin-Voigt model for viscoelasticity, Inverse Problems, 35 (2019), 45pp. doi: 10.1088/1361-6420/ab323e.  Google Scholar

[24]

V. Isakov, Inverse Problems for Partial Differential Equations, Applied Mathematical Sciences, 127, Springer, New York, 2006. doi: 10.1007/0-387-32183-7.  Google Scholar

[25]

V. K. Ivanov, On linear problems which are not well-posed, Dokl. Akad. Nauk SSSR, 145 (1962), 270-272.   Google Scholar

[26]

B. Kaltenbacher, An iteratively regularized Gauss-Newton-Halley method for solving nonlinear ill-posed problems, Numer. Math., 131 (2015), 33-57.  doi: 10.1007/s00211-014-0682-5.  Google Scholar

[27]

B. Kaltenbacher, Mathematics of nonlinear acoustics, Evol. Equ. Control Theory, 4 (2015), 447-491.  doi: 10.3934/eect.2015.4.447.  Google Scholar

[28]

B. Kaltenbacher, Periodic solutions and multiharmonic expansions for the Westervelt equation, to appear, Evol. Equ. Control Theory. doi: 10.3934/eect.2020063.  Google Scholar

[29]

B. Kaltenbacher and I. Lasiecka, Global existence and exponential decay rates for the Westervelt equation, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 503-523.  doi: 10.3934/dcdss.2009.2.503.  Google Scholar

[30]

B. Kaltenbacher and A. Klassen, On convergence and convergence rates for Ivanov and Morozov regularisation and application to some parameter identification problems in elliptic PDEs, Inverse Problems, 34 (2018), 24pp. doi: 10.1088/1361-6420/aab739.  Google Scholar

[31]

B. Kaltenbacher, A. Neubauer and O.Scherzer, Iterative Regularization Methods for Nonlinear Ill-Posed Problems, Radon Series on Computational and Applied Mathematics, 6, Walter de Gruyter GmbH & Co. KG, Berlin, 2008. doi: 10.1515/9783110208276.  Google Scholar

[32]

V. Kuznetsov, Equations of nonlinear acoustics, Soviet Physics - Acoustics, 16 (1971), 467-470.   Google Scholar

[33]

M. B. Lesser and R. Seebass, The structure of a weak shock wave undergoing reflexion from a wall, J. Fluid Mech., 31 (1968), 501-528.  doi: 10.1017/S0022112068000303.  Google Scholar

[34]

M. J. Lighthill, Viscosity effects in sound waves of finite amplitude, in Surveys in Mechanics, Cambridge, at the University Press, 1956, 250–351.  Google Scholar

[35]

D. Lorenz and N. Worliczek, Necessary conditions for variational regularisation schemes, Inverse Problems, 29 (2013), 19pp. doi: 10.1088/0266-5611/29/7/075016.  Google Scholar

[36]

S. Meyer and M. Wilke, Optimal regularity and long-time behavior of solutions for the Westervelt equation, Appl. Math. Optim., 64 (2011), 257-271.  doi: 10.1007/s00245-011-9138-9.  Google Scholar

[37]

V. A. Morozov, On the solution of functional equations by the method of regularisation, Soviet Math. Dokl., 7 (1966), 414-417.   Google Scholar

[38]

M. MuhrV. NikolićB. Wohlmuth and L. Wunderlich, Isogeometric shape optimization for nonlinear ultrasound focusing, Evol. Equ. Control Theory, 8 (2019), 163-202.  doi: 10.3934/eect.2019010.  Google Scholar

[39]

A. Neubauer, On Nesterov acceleration for Landweber iteration of linear ill-posed problems, J. Inverse Ill-Posed Probl., 25 (2017), 381-390.  doi: 10.1515/jiip-2016-0060.  Google Scholar

[40]

A. Neubauer, Tikhonov-regularisation of ill-posed linear operator equations on closed convex sets, J. Approx. Theory, 53 (1988), 304-320.  doi: 10.1016/0021-9045(88)90025-1.  Google Scholar

[41]

A. Neubauer and O. Scherzer, A convergent rate result for a steepest descent method and a minimal error method for the solution of nonlinear ill-posed problems, Z. Anal. Anwendungen, 14 (1995), 369-377.  doi: 10.4171/ZAA/679.  Google Scholar

[42]

H. Ockendon and J. R. Ockendon, Waves and Compressible Flow, Texts in Applied Mathematics, 47, Springer-Verlag, New York, 2004. doi: 10.1007/b97537.  Google Scholar

[43]

A. Pierce, Unique identification of eigenvalues and coefficients in a parabolic problem, SIAM J. Control Optim., 17 (1979), 494-499.  doi: 10.1137/0317035.  Google Scholar

[44]

A. Rieder, On convergence rates of inexact Newton regularizations, Numer. Math., 88 (2001), 347-365.  doi: 10.1007/PL00005448.  Google Scholar

[45]

W. Rundell and P. E. Sacks, Reconstruction techniques for classical inverse Sturm-Liouville problems, Math. Comp., 58 (1992), 161-183.  doi: 10.1090/S0025-5718-1992-1106979-0.  Google Scholar

[46]

O. Scherzer, A modified Landweber iteration for solving parameter estimation problems, Appl. Math. Optim., 38 (1998), 45-68.  doi: 10.1007/s002459900081.  Google Scholar

[47]

T. I. Seidman and C. R. Vogel, Well-posedness and convergence of some regularisation methods for non-linear ill posed problems, Inverse Problems, 5 (1989), 227-238.  doi: 10.1088/0266-5611/5/2/008.  Google Scholar

[48]

F. VarrayO. BassetP. Tortoli and C. Cachard, Extensions of nonlinear B/A parameter imaging methods for echo mode, IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, 58 (2011), 1232-1244.  doi: 10.1109/TUFFC.2011.1933.  Google Scholar

[49]

P. J. Westervelt, Parametric acoustic array, J. Acoustical Soc. Amer., 35 (1963), 535-537.  doi: 10.1121/1.1918525.  Google Scholar

[50]

M. Yamamoto and B. Kaltenbacher, An inverse source problem related to acoustic nonlinearity parameter imaging, to appear, Time-Dependent Problems in Imaging and Parameter Identification, Springer, 2021. Google Scholar

[51]

E. A. Zabolotskaya and R. V. Khokhlov, Quasi-plane waves in the non-linear acoustics of confined beams, Soviet Physics - Acoustics, 15 (1969), 35-40.   Google Scholar

[52]

D. ZhangX. Chen and X.-F. Gong, Acoustic nonlinearity parameter tomography for biological tissues via parametric array from a circular piston source - Theoretical analysis and computer simulations, J. Acoustical Soc. Amer., 109 (2001), 1219-1225.  doi: 10.1121/1.1344160.  Google Scholar

[53]

D. ZhangX. Gong and S. Ye, Acoustic nonlinearity parameter tomography for biological specimens via measurements of the second harmonics, J. Acoustical Soc. Amer., 99 (1996), 2397-2402.  doi: 10.1121/1.415427.  Google Scholar

show all references

References:
[1]

A. B. Bakushinskiĭ, On a convergence problem of the iterative-regularised Gauss-Newton method, Comput. Math. Math. Phys., 32 (1992), 1353-1359.   Google Scholar

[2]

A. B. Bakushinskii, Remarks on choosing a regularisation parameter using the quasi-optimality and ratio criterion, USSR Comput. Math. Math. Phys., 24 (1984), 181-182.  doi: 10.1016/0041-5553(84)90253-2.  Google Scholar

[3]

L. Bjørnø, Characterization of biological media by means of their non-linearity, Ultrasonics, 24 (1986), 254-259.  doi: 10.1016/0041-624x(86)90102-2.  Google Scholar

[4]

D. T. Blackstock, Approximate equations governing finite-amplitude sound in thermoviscous fluids, Tech Report, GD/E Report, GD-1463-52, General Dynamics Corp., Rochester, NY, 1963. Google Scholar

[5]

B. BlaschkeA. Neubauer and O. Scherzer, On convergence rates for the iteratively regularised Gauss-Newton method, IMA J. Numer. Anal., 17 (1997), 421-436.  doi: 10.1093/imanum/17.3.421.  Google Scholar

[6]

J. M. Burgers, The Nonlinear Diffusion Equation, Springer, Netherlands, 1974. doi: 10.1007/978-94-010-1745-9.  Google Scholar

[7]

V. BurovI. GurinovichO. Rudenko and E. Tagunov, Reconstruction of the spatial distribution of the nonlinearity parameter and sound velocity in acoustic nonlinear tomography, Acoustical Physics, 40 (1994), 816-823.   Google Scholar

[8]

C. A. Cain, Ultrasonic reflection mode imaging of the nonlinear parameter B/A: A theoretical basis, IEEE 1985 Ultrasonics Symposium, San Francisco, CA, USA, 1985. doi: 10.1109/ULTSYM.1985.198640.  Google Scholar

[9]

C. Clason and A. Klassen, Quasi-solution of linear inverse problems in non-reflexive Banach spaces, J. Inverse Ill-Posed Probl., 26 (2018), 689-702.  doi: 10.1515/jiip-2018-0026.  Google Scholar

[10]

C. Clason and K. Kunisch, A duality-based approach to elliptic control problems in non-reflexive Banach spaces, ESAIM Control Optim. Calc. Var., 17 (2011), 243-266.  doi: 10.1051/cocv/2010003.  Google Scholar

[11]

D. G. Crighton, Model equations of nonlinear acoustics, Ann. Rev. Fluid Mech., 11 (1979), 11-33.  doi: 10.1146/annurev.fl.11.010179.000303.  Google Scholar

[12]

H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Mathematics and its Applications, 375, Kluwer Academic Publishers Group, Dordrecht, 1996.  Google Scholar

[13]

H. W. EnglK. Kunisch and A. Neubauer, Convergence rates for Tikhonov regularisation of non-linear ill-posed problems, Inverse Problems, 5 (1989), 523-540.  doi: 10.1088/0266-5611/5/4/007.  Google Scholar

[14]

L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 1998.  Google Scholar

[15]

M. F. Hamilton and D. T. Blackstock, Nonlinear Acoustics, Vol. 1, Academic Press, San Diego, 1998. Google Scholar

[16]

M. Hanke, A regularizing Levenberg–Marquardt scheme, with applications to inverse groundwater filtration problems, Inverse Problems, 13 (1997), 79-95.  doi: 10.1088/0266-5611/13/1/007.  Google Scholar

[17]

M. HankeA. Neubauer and O. Scherzer, A convergence analysis of the Landweber iteration for nonlinear ill-posed problems, Numer. Math., 72 (1995), 21-37.  doi: 10.1007/s002110050158.  Google Scholar

[18]

F. Hettlich and W. Rundell, A second degree method for nonlinear inverse problems, SIAM J. Numer. Anal., 37 (2000), 587-620.  doi: 10.1137/S0036142998341246.  Google Scholar

[19]

B. HofmannB. KaltenbacherC. Pöschl and O. Scherzer, A convergence rates result for Tikhonov regularisation in Banach spaces with non-smooth operators, Inverse Problems, 23 (2007), 987-1010.  doi: 10.1088/0266-5611/23/3/009.  Google Scholar

[20]

T. Hohage, Logarithmic convergence rates of the iteratively regularised Gauß-Newton method for an inverse potential and an inverse scattering problem, Inverse Problems, 13 (1997), 1279-1299.  doi: 10.1088/0266-5611/13/5/012.  Google Scholar

[21]

S. Hubmer and R. Ramlau, Nesterov's accelerated gradient method for nonlinear ill-posed problems with a locally convex residual functional, Inverse Problems, 34 (2018), 30pp. doi: 10.1088/1361-6420/aacebe.  Google Scholar

[22]

N. IchidaT. Sato and M. Linzer, Imaging the nonlinear ultrasonic parameter of a medium, Ultrasonic Imaging, 5 (1983), 295-299.  doi: 10.1177/016173468300500401.  Google Scholar

[23]

O. Y. Imanuvilov and M. Yamamoto, Carleman estimate and an inverse source problem for the Kelvin-Voigt model for viscoelasticity, Inverse Problems, 35 (2019), 45pp. doi: 10.1088/1361-6420/ab323e.  Google Scholar

[24]

V. Isakov, Inverse Problems for Partial Differential Equations, Applied Mathematical Sciences, 127, Springer, New York, 2006. doi: 10.1007/0-387-32183-7.  Google Scholar

[25]

V. K. Ivanov, On linear problems which are not well-posed, Dokl. Akad. Nauk SSSR, 145 (1962), 270-272.   Google Scholar

[26]

B. Kaltenbacher, An iteratively regularized Gauss-Newton-Halley method for solving nonlinear ill-posed problems, Numer. Math., 131 (2015), 33-57.  doi: 10.1007/s00211-014-0682-5.  Google Scholar

[27]

B. Kaltenbacher, Mathematics of nonlinear acoustics, Evol. Equ. Control Theory, 4 (2015), 447-491.  doi: 10.3934/eect.2015.4.447.  Google Scholar

[28]

B. Kaltenbacher, Periodic solutions and multiharmonic expansions for the Westervelt equation, to appear, Evol. Equ. Control Theory. doi: 10.3934/eect.2020063.  Google Scholar

[29]

B. Kaltenbacher and I. Lasiecka, Global existence and exponential decay rates for the Westervelt equation, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 503-523.  doi: 10.3934/dcdss.2009.2.503.  Google Scholar

[30]

B. Kaltenbacher and A. Klassen, On convergence and convergence rates for Ivanov and Morozov regularisation and application to some parameter identification problems in elliptic PDEs, Inverse Problems, 34 (2018), 24pp. doi: 10.1088/1361-6420/aab739.  Google Scholar

[31]

B. Kaltenbacher, A. Neubauer and O.Scherzer, Iterative Regularization Methods for Nonlinear Ill-Posed Problems, Radon Series on Computational and Applied Mathematics, 6, Walter de Gruyter GmbH & Co. KG, Berlin, 2008. doi: 10.1515/9783110208276.  Google Scholar

[32]

V. Kuznetsov, Equations of nonlinear acoustics, Soviet Physics - Acoustics, 16 (1971), 467-470.   Google Scholar

[33]

M. B. Lesser and R. Seebass, The structure of a weak shock wave undergoing reflexion from a wall, J. Fluid Mech., 31 (1968), 501-528.  doi: 10.1017/S0022112068000303.  Google Scholar

[34]

M. J. Lighthill, Viscosity effects in sound waves of finite amplitude, in Surveys in Mechanics, Cambridge, at the University Press, 1956, 250–351.  Google Scholar

[35]

D. Lorenz and N. Worliczek, Necessary conditions for variational regularisation schemes, Inverse Problems, 29 (2013), 19pp. doi: 10.1088/0266-5611/29/7/075016.  Google Scholar

[36]

S. Meyer and M. Wilke, Optimal regularity and long-time behavior of solutions for the Westervelt equation, Appl. Math. Optim., 64 (2011), 257-271.  doi: 10.1007/s00245-011-9138-9.  Google Scholar

[37]

V. A. Morozov, On the solution of functional equations by the method of regularisation, Soviet Math. Dokl., 7 (1966), 414-417.   Google Scholar

[38]

M. MuhrV. NikolićB. Wohlmuth and L. Wunderlich, Isogeometric shape optimization for nonlinear ultrasound focusing, Evol. Equ. Control Theory, 8 (2019), 163-202.  doi: 10.3934/eect.2019010.  Google Scholar

[39]

A. Neubauer, On Nesterov acceleration for Landweber iteration of linear ill-posed problems, J. Inverse Ill-Posed Probl., 25 (2017), 381-390.  doi: 10.1515/jiip-2016-0060.  Google Scholar

[40]

A. Neubauer, Tikhonov-regularisation of ill-posed linear operator equations on closed convex sets, J. Approx. Theory, 53 (1988), 304-320.  doi: 10.1016/0021-9045(88)90025-1.  Google Scholar

[41]

A. Neubauer and O. Scherzer, A convergent rate result for a steepest descent method and a minimal error method for the solution of nonlinear ill-posed problems, Z. Anal. Anwendungen, 14 (1995), 369-377.  doi: 10.4171/ZAA/679.  Google Scholar

[42]

H. Ockendon and J. R. Ockendon, Waves and Compressible Flow, Texts in Applied Mathematics, 47, Springer-Verlag, New York, 2004. doi: 10.1007/b97537.  Google Scholar

[43]

A. Pierce, Unique identification of eigenvalues and coefficients in a parabolic problem, SIAM J. Control Optim., 17 (1979), 494-499.  doi: 10.1137/0317035.  Google Scholar

[44]

A. Rieder, On convergence rates of inexact Newton regularizations, Numer. Math., 88 (2001), 347-365.  doi: 10.1007/PL00005448.  Google Scholar

[45]

W. Rundell and P. E. Sacks, Reconstruction techniques for classical inverse Sturm-Liouville problems, Math. Comp., 58 (1992), 161-183.  doi: 10.1090/S0025-5718-1992-1106979-0.  Google Scholar

[46]

O. Scherzer, A modified Landweber iteration for solving parameter estimation problems, Appl. Math. Optim., 38 (1998), 45-68.  doi: 10.1007/s002459900081.  Google Scholar

[47]

T. I. Seidman and C. R. Vogel, Well-posedness and convergence of some regularisation methods for non-linear ill posed problems, Inverse Problems, 5 (1989), 227-238.  doi: 10.1088/0266-5611/5/2/008.  Google Scholar

[48]

F. VarrayO. BassetP. Tortoli and C. Cachard, Extensions of nonlinear B/A parameter imaging methods for echo mode, IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, 58 (2011), 1232-1244.  doi: 10.1109/TUFFC.2011.1933.  Google Scholar

[49]

P. J. Westervelt, Parametric acoustic array, J. Acoustical Soc. Amer., 35 (1963), 535-537.  doi: 10.1121/1.1918525.  Google Scholar

[50]

M. Yamamoto and B. Kaltenbacher, An inverse source problem related to acoustic nonlinearity parameter imaging, to appear, Time-Dependent Problems in Imaging and Parameter Identification, Springer, 2021. Google Scholar

[51]

E. A. Zabolotskaya and R. V. Khokhlov, Quasi-plane waves in the non-linear acoustics of confined beams, Soviet Physics - Acoustics, 15 (1969), 35-40.   Google Scholar

[52]

D. ZhangX. Chen and X.-F. Gong, Acoustic nonlinearity parameter tomography for biological tissues via parametric array from a circular piston source - Theoretical analysis and computer simulations, J. Acoustical Soc. Amer., 109 (2001), 1219-1225.  doi: 10.1121/1.1344160.  Google Scholar

[53]

D. ZhangX. Gong and S. Ye, Acoustic nonlinearity parameter tomography for biological specimens via measurements of the second harmonics, J. Acoustical Soc. Amer., 99 (1996), 2397-2402.  doi: 10.1121/1.415427.  Google Scholar

Figure 1.  The surface Σ
Figure 2.  Reconstructions of a smooth $ \kappa(x) $ from time trace data at $ \,x = 1\, $ under 0.1% (left) and 1% (right) noise using Newton's method
Figure 3.  Reconstructions of piecewise linear $ \kappa(x) $ from time trace data at $ \,x = 1 $ under 0.1% (left) and 1% (right) noise using Newton's method
Figure 4.  Reconstructions of a piecewise constant $ \kappa(x) $ from time trace data at $ x = 1 $ under $ 0.1\% $ noise using Newton iteration
Figure 5.  Comparison of Newton (in red) and Halley (in blue) final reconstructions under $ 0.1\% $ noise
Figure 6.  Comparison of Newton (in red) and Halley (in blue) final reconstructions and norm differences of the $ n^{\rm th} $ iterate $ \kappa_n $ and the actual $ \kappa $. Noise level was $ 1\% $
Figure 7.  Reconstructions of a piecewise linear $ \kappa(x) $ from time trace data at $ x = 1 $ under $ 1\% $ noise using Landweber iteration
Figure 8.  The leftmost figure shows reconstructions of $ \kappa(x) $ under $ 0.1\% $ noise using Landweber iteration. The rightmost figure shows the decay of the norm $ \kappa_n(x)-\kappa_{\rm act}(x) $
[1]

Tram Thi Ngoc Nguyen, Anne Wald. On numerical aspects of parameter identification for the Landau-Lifshitz-Gilbert equation in Magnetic Particle Imaging. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021042

[2]

Adrien Dekkers, Anna Rozanova-Pierrat, Vladimir Khodygo. Models of nonlinear acoustics viewed as approximations of the Kuznetsov equation. Discrete & Continuous Dynamical Systems, 2020, 40 (7) : 4231-4258. doi: 10.3934/dcds.2020179

[3]

Qinxi Bai, Zhijun Li, Lei Wang, Bing Tan, Enmin Feng. Parameter identification and numerical simulation for the exchange coefficient of dissolved oxygen concentration under ice in a boreal lake. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1463-1478. doi: 10.3934/jimo.2018016

[4]

Qinqin Chai, Ryan Loxton, Kok Lay Teo, Chunhua Yang. A unified parameter identification method for nonlinear time-delay systems. Journal of Industrial & Management Optimization, 2013, 9 (2) : 471-486. doi: 10.3934/jimo.2013.9.471

[5]

Barbara Kaltenbacher. Mathematics of nonlinear acoustics. Evolution Equations & Control Theory, 2015, 4 (4) : 447-491. doi: 10.3934/eect.2015.4.447

[6]

Zhi-Xue Zhao, Mapundi K. Banda, Bao-Zhu Guo. Boundary switch on/off control approach to simultaneous identification of diffusion coefficient and initial state for one-dimensional heat equation. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2533-2554. doi: 10.3934/dcdsb.2020021

[7]

Q-Heung Choi, Tacksun Jung. A nonlinear wave equation with jumping nonlinearity. Discrete & Continuous Dynamical Systems, 2000, 6 (4) : 797-802. doi: 10.3934/dcds.2000.6.797

[8]

Igor Shevchenko, Barbara Kaltenbacher. Absorbing boundary conditions for the Westervelt equation. Conference Publications, 2015, 2015 (special) : 1000-1008. doi: 10.3934/proc.2015.1000

[9]

Rainer Brunnhuber, Barbara Kaltenbacher, Petronela Radu. Relaxation of regularity for the Westervelt equation by nonlinear damping with applications in acoustic-acoustic and elastic-acoustic coupling. Evolution Equations & Control Theory, 2014, 3 (4) : 595-626. doi: 10.3934/eect.2014.3.595

[10]

Lei Wang, Jinlong Yuan, Yingfang Li, Enmin Feng, Zhilong Xiu. Parameter identification of nonlinear delayed dynamical system in microbial fermentation based on biological robustness. Numerical Algebra, Control & Optimization, 2014, 4 (2) : 103-113. doi: 10.3934/naco.2014.4.103

[11]

Qianqian Wang, Minan Tang, Aimin An, Jiawei Lu, Yingying Zhao. Parameter optimal identification and dynamic behavior analysis of nonlinear model for the solution purification process of zinc hydrometallurgy. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021159

[12]

Markus Muhr, Vanja Nikolić, Barbara Wohlmuth, Linus Wunderlich. Isogeometric shape optimization for nonlinear ultrasound focusing. Evolution Equations & Control Theory, 2019, 8 (1) : 163-202. doi: 10.3934/eect.2019010

[13]

Alfredo Lorenzi, Eugenio Sinestrari. An identification problem for a nonlinear one-dimensional wave equation. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5253-5271. doi: 10.3934/dcds.2013.33.5253

[14]

Simon Hubmer, Andreas Neubauer, Ronny Ramlau, Henning U. Voss. On the parameter estimation problem of magnetic resonance advection imaging. Inverse Problems & Imaging, 2018, 12 (1) : 175-204. doi: 10.3934/ipi.2018007

[15]

Barbara Kaltenbacher, Irena Lasiecka. Global existence and exponential decay rates for the Westervelt equation. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 503-523. doi: 10.3934/dcdss.2009.2.503

[16]

Barbara Kaltenbacher. Periodic solutions and multiharmonic expansions for the Westervelt equation. Evolution Equations & Control Theory, 2021, 10 (2) : 229-247. doi: 10.3934/eect.2020063

[17]

Pingping Niu, Shuai Lu, Jin Cheng. On periodic parameter identification in stochastic differential equations. Inverse Problems & Imaging, 2019, 13 (3) : 513-543. doi: 10.3934/ipi.2019025

[18]

Yuepeng Wang, Yue Cheng, I. Michael Navon, Yuanhong Guan. Parameter identification techniques applied to an environmental pollution model. Journal of Industrial & Management Optimization, 2018, 14 (2) : 817-831. doi: 10.3934/jimo.2017077

[19]

Xianbo Sun, Zhanbo Chen, Pei Yu. Parameter identification on Abelian integrals to achieve Chebyshev property. Discrete & Continuous Dynamical Systems - B, 2021, 26 (10) : 5661-5679. doi: 10.3934/dcdsb.2020375

[20]

David L. Russell. Coefficient identification and fault detection in linear elastic systems; one dimensional problems. Mathematical Control & Related Fields, 2011, 1 (3) : 391-411. doi: 10.3934/mcrf.2011.1.391

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (157)
  • HTML views (334)
  • Cited by (0)

Other articles
by authors

[Back to Top]