October  2021, 15(5): 999-1014. doi: 10.3934/ipi.2021025

A note on transmission eigenvalues in electromagnetic scattering theory

1. 

Department of Mathematics, Rutgers University, Piscataway, NJ 08854-8019, USA

2. 

Institute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

* Corresponding author: jingni.xiao@rutgers.edu

Received  October 2020 Revised  January 2021 Published  October 2021 Early access  March 2021

Fund Project: The author F. Cakoni is supported in part by the AFOSR Grant FA9550-20-1-0024 and NSF Grant DMS-1813492

This short note was motivated by our efforts to investigate whether there exists a half plane free of transmission eigenvalues for Maxwell's equations. This question is related to solvability of the time domain interior transmission problem which plays a fundamental role in the justification of linear sampling and factorization methods with time dependent data. Our original goal was to adapt semiclassical analysis techniques developed in [21,23] to prove that for some combination of electromagnetic parameters, the transmission eigenvalues lie in a strip around the real axis. Unfortunately we failed. To try to understand why, we looked at the particular example of spherically symmetric media, which provided us with some insight on why we couldn't prove the above result. Hence this paper reports our findings on the location of all transmission eigenvalues and the existence of complex transmission eigenvalues for Maxwell's equations for spherically stratified media. We hope that these results can provide reasonable conjectures for general electromagnetic media.

Citation: Fioralba Cakoni, Shixu Meng, Jingni Xiao. A note on transmission eigenvalues in electromagnetic scattering theory. Inverse Problems & Imaging, 2021, 15 (5) : 999-1014. doi: 10.3934/ipi.2021025
References:
[1]

E. Blåsten, H. Liu and J. Xiao, On an electromagnetic problem in a corner and its applications, accepted in Anal. PDE, arXiv: 1901.00581. Google Scholar

[2]

F. Cakoni and D. Colton, A Qualitative Approach to Inverse Scattering Theory, vol. 188 of Applied Mathematical Sciences, Springer, New York, 2014. doi: 10.1007/978-1-4614-8827-9.  Google Scholar

[3]

F. Cakoni, D. Colton and H. Haddar, Inverse Scattering Theory and Transmission Eigenvalues, vol. 88 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2016. doi: 10.1137/1.9781611974461.  Google Scholar

[4]

F. Cakoni, D. Colton and P. Monk, The Linear Sampling Method in Inverse Electromagnetic Scattering, vol. 80 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2011. doi: 10.1137/1.9780898719406.  Google Scholar

[5]

F. CakoniD. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010), 237-255.  doi: 10.1137/090769338.  Google Scholar

[6]

F. Cakoni and A. Kirsch, On the interior transmission eigenvalue problem, Int. J. Comput. Sci. Math., 3 (2010), 142-167.  doi: 10.1504/IJCSM.2010.033932.  Google Scholar

[7]

F. Cakoni, P. Monk and V. Selgas, Analysis of the linear sampling method for imaging penetrable obstacles in the time domain, accepted in Anal. PDE. Google Scholar

[8]

F. Cakoni and H.-M. Nguyen, On the discreteness of transmission eigenvalues for the Maxwell's equations, SIAM J. Math. Anal., 53 (2021), 888-913.  doi: 10.1137/20M1335121.  Google Scholar

[9]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, vol. 93 of Applied Mathematical Sciences, 4$^{th}$ edition, Springer, Cham, 2019. doi: 10.1007/978-3-030-30351-8.  Google Scholar

[10]

D. Colton and Y.-J. Leung, Complex eigenvalues and the inverse spectral problem for transmission eigenvalues, Inverse Problems, 29 (2013), 104008, 6 pp. doi: 10.1088/0266-5611/29/10/104008.  Google Scholar

[11]

D. Colton and Y.-J. Leung, The existence of complex transmission eigenvalues for spherically stratified media, Appl. Anal., 96 (2017), 39-47.  doi: 10.1080/00036811.2016.1210788.  Google Scholar

[12]

D. Colton, Y.-J. Leung and S. Meng, Distribution of complex transmission eigenvalues for spherically stratified media, Inverse Problems, 31 (2015), 035006, 19 pp. doi: 10.1088/0266-5611/31/3/035006.  Google Scholar

[13]

D. Colton and P. Monk, The inverse scattering problem for time-harmonic acoustic waves in a penetrable medium, Quart. J. Mech. Appl. Math., 40 (1987), 189-212.  doi: 10.1093/qjmam/40.2.189.  Google Scholar

[14]

H. Haddar and S. Meng, The spectral analysis of the interior transmission eigenvalue problem for Maxwell's equations, J. Math. Pures Appl., 120 (2018), 1-32.  doi: 10.1016/j.matpur.2018.10.004.  Google Scholar

[15]

M. HitrikK. KrupchykP. Ola and L. Päivärinta, The interior transmission problem and bounds on transmission eigenvalues, Math. Res. Lett., 18 (2011), 279-293.  doi: 10.4310/MRL.2011.v18.n2.a7.  Google Scholar

[16]

A. Kirsch, The denseness of the far field patterns for the transmission problem, IMA J. Appl. Math., 37 (1986), 213-225.  doi: 10.1093/imamat/37.3.213.  Google Scholar

[17]

A. Kirsch and F. Hettlich, The Mathematical Theory of Time-Harmonic Maxwell's equations, vol. 190 of Applied Mathematical Sciences, Springer, Cham, 2015. doi: 10.1007/978-3-319-11086-8.  Google Scholar

[18]

Y.-J. Leung and D. Colton, Complex transmission eigenvalues for spherically stratified media, Inverse Problems, 28 (2012), 075005, 9 pp. doi: 10.1088/0266-5611/28/7/075005.  Google Scholar

[19]

H.-M. Nguyen and Q.-H. Nguyen, Discreteness of interior transmission eigenvalues revisited, Calc. Var. Partial Differential Equations, 56 (2017), Paper No. 51, 38 pp. doi: 10.1007/s00526-017-1143-7.  Google Scholar

[20]

V. Petkov and G. Vodev, Localization of the interior transmission eigenvalues for a ball, Inverse Probl. Imaging, 11 (2017), 355-372.  doi: 10.3934/ipi.2017017.  Google Scholar

[21]

G. Vodev, Transmission eigenvalue-free regions, Comm. Math. Phys., 336 (2015), 1141-1166.  doi: 10.1007/s00220-015-2311-2.  Google Scholar

[22]

G. Vodev, Transmission eigenvalues for strictly concave domains, Math. Ann., 366 (2016), 301-336.  doi: 10.1007/s00208-015-1329-2.  Google Scholar

[23]

G. Vodev, High-frequency approximation of the interior Dirichlet-to-Neumann map and applications to the transmission eigenvalues, Anal. PDE, 11 (2018), 213-236.  doi: 10.2140/apde.2018.11.213.  Google Scholar

show all references

References:
[1]

E. Blåsten, H. Liu and J. Xiao, On an electromagnetic problem in a corner and its applications, accepted in Anal. PDE, arXiv: 1901.00581. Google Scholar

[2]

F. Cakoni and D. Colton, A Qualitative Approach to Inverse Scattering Theory, vol. 188 of Applied Mathematical Sciences, Springer, New York, 2014. doi: 10.1007/978-1-4614-8827-9.  Google Scholar

[3]

F. Cakoni, D. Colton and H. Haddar, Inverse Scattering Theory and Transmission Eigenvalues, vol. 88 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2016. doi: 10.1137/1.9781611974461.  Google Scholar

[4]

F. Cakoni, D. Colton and P. Monk, The Linear Sampling Method in Inverse Electromagnetic Scattering, vol. 80 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2011. doi: 10.1137/1.9780898719406.  Google Scholar

[5]

F. CakoniD. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010), 237-255.  doi: 10.1137/090769338.  Google Scholar

[6]

F. Cakoni and A. Kirsch, On the interior transmission eigenvalue problem, Int. J. Comput. Sci. Math., 3 (2010), 142-167.  doi: 10.1504/IJCSM.2010.033932.  Google Scholar

[7]

F. Cakoni, P. Monk and V. Selgas, Analysis of the linear sampling method for imaging penetrable obstacles in the time domain, accepted in Anal. PDE. Google Scholar

[8]

F. Cakoni and H.-M. Nguyen, On the discreteness of transmission eigenvalues for the Maxwell's equations, SIAM J. Math. Anal., 53 (2021), 888-913.  doi: 10.1137/20M1335121.  Google Scholar

[9]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, vol. 93 of Applied Mathematical Sciences, 4$^{th}$ edition, Springer, Cham, 2019. doi: 10.1007/978-3-030-30351-8.  Google Scholar

[10]

D. Colton and Y.-J. Leung, Complex eigenvalues and the inverse spectral problem for transmission eigenvalues, Inverse Problems, 29 (2013), 104008, 6 pp. doi: 10.1088/0266-5611/29/10/104008.  Google Scholar

[11]

D. Colton and Y.-J. Leung, The existence of complex transmission eigenvalues for spherically stratified media, Appl. Anal., 96 (2017), 39-47.  doi: 10.1080/00036811.2016.1210788.  Google Scholar

[12]

D. Colton, Y.-J. Leung and S. Meng, Distribution of complex transmission eigenvalues for spherically stratified media, Inverse Problems, 31 (2015), 035006, 19 pp. doi: 10.1088/0266-5611/31/3/035006.  Google Scholar

[13]

D. Colton and P. Monk, The inverse scattering problem for time-harmonic acoustic waves in a penetrable medium, Quart. J. Mech. Appl. Math., 40 (1987), 189-212.  doi: 10.1093/qjmam/40.2.189.  Google Scholar

[14]

H. Haddar and S. Meng, The spectral analysis of the interior transmission eigenvalue problem for Maxwell's equations, J. Math. Pures Appl., 120 (2018), 1-32.  doi: 10.1016/j.matpur.2018.10.004.  Google Scholar

[15]

M. HitrikK. KrupchykP. Ola and L. Päivärinta, The interior transmission problem and bounds on transmission eigenvalues, Math. Res. Lett., 18 (2011), 279-293.  doi: 10.4310/MRL.2011.v18.n2.a7.  Google Scholar

[16]

A. Kirsch, The denseness of the far field patterns for the transmission problem, IMA J. Appl. Math., 37 (1986), 213-225.  doi: 10.1093/imamat/37.3.213.  Google Scholar

[17]

A. Kirsch and F. Hettlich, The Mathematical Theory of Time-Harmonic Maxwell's equations, vol. 190 of Applied Mathematical Sciences, Springer, Cham, 2015. doi: 10.1007/978-3-319-11086-8.  Google Scholar

[18]

Y.-J. Leung and D. Colton, Complex transmission eigenvalues for spherically stratified media, Inverse Problems, 28 (2012), 075005, 9 pp. doi: 10.1088/0266-5611/28/7/075005.  Google Scholar

[19]

H.-M. Nguyen and Q.-H. Nguyen, Discreteness of interior transmission eigenvalues revisited, Calc. Var. Partial Differential Equations, 56 (2017), Paper No. 51, 38 pp. doi: 10.1007/s00526-017-1143-7.  Google Scholar

[20]

V. Petkov and G. Vodev, Localization of the interior transmission eigenvalues for a ball, Inverse Probl. Imaging, 11 (2017), 355-372.  doi: 10.3934/ipi.2017017.  Google Scholar

[21]

G. Vodev, Transmission eigenvalue-free regions, Comm. Math. Phys., 336 (2015), 1141-1166.  doi: 10.1007/s00220-015-2311-2.  Google Scholar

[22]

G. Vodev, Transmission eigenvalues for strictly concave domains, Math. Ann., 366 (2016), 301-336.  doi: 10.1007/s00208-015-1329-2.  Google Scholar

[23]

G. Vodev, High-frequency approximation of the interior Dirichlet-to-Neumann map and applications to the transmission eigenvalues, Anal. PDE, 11 (2018), 213-236.  doi: 10.2140/apde.2018.11.213.  Google Scholar

[1]

Fioralba Cakoni, Drossos Gintides. New results on transmission eigenvalues. Inverse Problems & Imaging, 2010, 4 (1) : 39-48. doi: 10.3934/ipi.2010.4.39

[2]

Andreas Kirsch. On the existence of transmission eigenvalues. Inverse Problems & Imaging, 2009, 3 (2) : 155-172. doi: 10.3934/ipi.2009.3.155

[3]

Johannes Elschner, Guanghui Hu. Uniqueness in inverse transmission scattering problems for multilayered obstacles. Inverse Problems & Imaging, 2011, 5 (4) : 793-813. doi: 10.3934/ipi.2011.5.793

[4]

Vesselin Petkov, Georgi Vodev. Localization of the interior transmission eigenvalues for a ball. Inverse Problems & Imaging, 2017, 11 (2) : 355-372. doi: 10.3934/ipi.2017017

[5]

Armin Lechleiter. The factorization method is independent of transmission eigenvalues. Inverse Problems & Imaging, 2009, 3 (1) : 123-138. doi: 10.3934/ipi.2009.3.123

[6]

Luc Robbiano. Counting function for interior transmission eigenvalues. Mathematical Control & Related Fields, 2016, 6 (1) : 167-183. doi: 10.3934/mcrf.2016.6.167

[7]

Zhiyuan Wen, Meirong Zhang. On the optimization problems of the principal eigenvalues of measure differential equations with indefinite measures. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3257-3274. doi: 10.3934/dcdsb.2020061

[8]

Yalin Zhang, Guoliang Shi. Continuous dependence of the transmission eigenvalues in one dimension. Inverse Problems & Imaging, 2015, 9 (1) : 273-287. doi: 10.3934/ipi.2015.9.273

[9]

Ha Pham, Plamen Stefanov. Weyl asymptotics of the transmission eigenvalues for a constant index of refraction. Inverse Problems & Imaging, 2014, 8 (3) : 795-810. doi: 10.3934/ipi.2014.8.795

[10]

Fioralba Cakoni, Anne Cossonnière, Houssem Haddar. Transmission eigenvalues for inhomogeneous media containing obstacles. Inverse Problems & Imaging, 2012, 6 (3) : 373-398. doi: 10.3934/ipi.2012.6.373

[11]

Fioralba Cakoni, Shari Moskow, Scott Rome. The perturbation of transmission eigenvalues for inhomogeneous media in the presence of small penetrable inclusions. Inverse Problems & Imaging, 2015, 9 (3) : 725-748. doi: 10.3934/ipi.2015.9.725

[12]

Jun Zhang, Xinyue Fan. An efficient spectral method for the Helmholtz transmission eigenvalues in polar geometries. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4799-4813. doi: 10.3934/dcdsb.2019031

[13]

Fioralba Cakoni, Shari Moskow, Scott Rome. Asymptotic expansions of transmission eigenvalues for small perturbations of media with generally signed contrast. Inverse Problems & Imaging, 2018, 12 (4) : 971-992. doi: 10.3934/ipi.2018041

[14]

Julián Fernández Bonder, Analía Silva, Juan F. Spedaletti. Gamma convergence and asymptotic behavior for eigenvalues of nonlocal problems. Discrete & Continuous Dynamical Systems, 2021, 41 (5) : 2125-2140. doi: 10.3934/dcds.2020355

[15]

Fei-Ying Yang, Wan-Tong Li, Jian-Wen Sun. Principal eigenvalues for some nonlocal eigenvalue problems and applications. Discrete & Continuous Dynamical Systems, 2016, 36 (7) : 4027-4049. doi: 10.3934/dcds.2016.36.4027

[16]

Jiří Benedikt. Continuous dependence of eigenvalues of $p$-biharmonic problems on $p$. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1469-1486. doi: 10.3934/cpaa.2013.12.1469

[17]

Tomas Godoy, Jean-Pierre Gossez, Sofia Paczka. On the principal eigenvalues of some elliptic problems with large drift. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 225-237. doi: 10.3934/dcds.2013.33.225

[18]

Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems & Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551

[19]

Kunquan Lan. Eigenvalues of second order differential equations with singularities. Conference Publications, 2001, 2001 (Special) : 241-247. doi: 10.3934/proc.2001.2001.241

[20]

Toshiyuki Suzuki. Scattering theory for semilinear Schrödinger equations with an inverse-square potential via energy methods. Evolution Equations & Control Theory, 2019, 8 (2) : 447-471. doi: 10.3934/eect.2019022

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (149)
  • HTML views (264)
  • Cited by (0)

Other articles
by authors

[Back to Top]