October  2021, 15(5): 1015-1033. doi: 10.3934/ipi.2021026

Two-dimensional inverse scattering for quasi-linear biharmonic operator

1. 

Biomimetics and Intelligent Systems Group, P.O. BOX 8000, FIN-90014 University of Oulu, Finland

2. 

Research Unit of Mathematical Sciences, P.O. BOX 3000, FIN-90014 University of Oulu, Finland

3. 

Department of Mathematics and Statistics, P.O. BOX 68, FI-00014 University of Helsinki

* Corresponding author: Jaakko Kultima

Received  October 2020 Revised  February 2021 Published  October 2021 Early access  March 2021

The subject of this work concerns the classical direct and inverse scattering problems for quasi-linear perturbations of the two-dimensional biharmonic operator. The quasi-linear perturbations of the first and zero order might be complex-valued and singular. We show the existence of the scattering solutions to the direct scattering problem in the Sobolev space $ W^1_{\infty}( \mathbb{{R}}^2) $. Then the inverse scattering problem can be formulated as follows: does the knowledge of the far field pattern uniquely determine the unknown coefficients for given differential operator? It turns out that the answer to this classical question is affirmative for quasi-linear perturbations of the biharmonic operator. Moreover, we present a numerical method for the reconstruction of unknown coefficients, which from the practical point of view can be thought of as recovery of the coefficients from fixed energy measurements.

Citation: Markus Harju, Jaakko Kultima, Valery Serov, Teemu Tyni. Two-dimensional inverse scattering for quasi-linear biharmonic operator. Inverse Problems & Imaging, 2021, 15 (5) : 1015-1033. doi: 10.3934/ipi.2021026
References:
[1]

S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 2 (1975), 151-218.   Google Scholar

[2]

T. M. Buzug, Computed Tomography: From Photon Statistics to Modern Cone-Beam CT, Springer, Berlin Heidelberg, 2008. Google Scholar

[3]

F. Cakoni and D. Colton, A Qualitative Approach in Inverse Scattering Theory, Springer, New York, 2014. doi: 10.1007/978-1-4614-8827-9.  Google Scholar

[4]

G. Fotopoulos and M. Harju, Inverse scattering with fixed observation angle data in 2D, Inv. Prob. Sci. Eng., 25 (2017), 1492-1507.  doi: 10.1080/17415977.2016.1267170.  Google Scholar

[5]

G. FotopoulosM. Harju and V. Serov, Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D, Inverse Problems ans Imaging, 7 (2013), 183-197.  doi: 10.3934/ipi.2013.7.183.  Google Scholar

[6]

G. Fotopoulos and V. Serov, Inverse fixed energy scattering problem for the two-dimensional nonlinear Schrödinger operator, Inv. Prob. Sci. Eng., 24 (2016), 692-710.  doi: 10.1080/17415977.2015.1055263.  Google Scholar

[7]

F. Gazzola, H.-Ch. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, Springer-Verlag, Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-12245-3.  Google Scholar

[8]

L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Inc., Upper Saddle River, New Jersey, 2004.  Google Scholar

[9]

M. Harju, On the Direct and Inverse Scattering Problems for a Nonlinear Three-Dimensional Schrödinger Equation, PhD-thesis, University of Oulu, 2010. Google Scholar

[10]

K. KrupchykM. Lassas and G. Uhlmann, Determining a first order perturbation of the biharmonic operator by partial boundary measurements, Journal of Functional Analysis, 262 (2012), 1781-1801.  doi: 10.1016/j.jfa.2011.11.021.  Google Scholar

[11]

K. KrupchykM. Lassas and G. Uhlmann, Inverse boundary value problems for the perturbed polyharmonic operator, Trans Amer. Math. Soc., 366 (2014), 95-112.  doi: 10.1090/S0002-9947-2013-05713-3.  Google Scholar

[12]

N. N. Lebedev, Special Functions and Their Applications, Dover Publications, 1972.  Google Scholar

[13]

B. Pausander, Scattering for the beam equation in low dimensions, Indiana Univ. Math. J., 59 (2010), 791–822. arXiv: 0903.3777v2 [math.AP]. doi: 10.1512/iumj.2010.59.3966.  Google Scholar

[14]

V. S. Serov, An inverse Born approximation for the general nonlinear Schrödinger operator on the line, Journal of Physics A: Mathematical and Theoretical, 42 (2009), 332002. doi: 10.1088/1751-8113/42/33/332002.  Google Scholar

[15]

V. Serov, M. Harju and G. Fotopoulos, Direct and inverse scattering for nonlinear Schrödinger equation in 2D, Journal of Mathematical Physics, 53 (2012), 123522. doi: 10.1063/1.4769825.  Google Scholar

[16]

T. Tyni, Numerical results for Saito's uniqueness theorem in inverse scattering theory, Inverse Problems, 35 (2020), 065002. doi: 10.1088/1361-6420/ab7d2d.  Google Scholar

[17]

T. Tyni and V. Serov, Scattering problems for perturbations of the multidimensional biharmonic operator, Inverse Problems and Imaging, 12 (2018), 205-227.  doi: 10.3934/ipi.2018008.  Google Scholar

[18]

T. Tyni and M. Harju, Inverse backscattering problem for perturbations of biharmonic operator, Inverse Problems, 33 (2017), 105002. doi: 10.1088/1361-6420/aa873e.  Google Scholar

[19]

T. Tyni and V. Serov, Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line, Inverse Problems and Imaging, 13 (2019), 159-175.  doi: 10.3934/ipi.2019009.  Google Scholar

[20]

E. Zeidler, Applied Functional Analysis, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-0821-1.  Google Scholar

show all references

References:
[1]

S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 2 (1975), 151-218.   Google Scholar

[2]

T. M. Buzug, Computed Tomography: From Photon Statistics to Modern Cone-Beam CT, Springer, Berlin Heidelberg, 2008. Google Scholar

[3]

F. Cakoni and D. Colton, A Qualitative Approach in Inverse Scattering Theory, Springer, New York, 2014. doi: 10.1007/978-1-4614-8827-9.  Google Scholar

[4]

G. Fotopoulos and M. Harju, Inverse scattering with fixed observation angle data in 2D, Inv. Prob. Sci. Eng., 25 (2017), 1492-1507.  doi: 10.1080/17415977.2016.1267170.  Google Scholar

[5]

G. FotopoulosM. Harju and V. Serov, Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D, Inverse Problems ans Imaging, 7 (2013), 183-197.  doi: 10.3934/ipi.2013.7.183.  Google Scholar

[6]

G. Fotopoulos and V. Serov, Inverse fixed energy scattering problem for the two-dimensional nonlinear Schrödinger operator, Inv. Prob. Sci. Eng., 24 (2016), 692-710.  doi: 10.1080/17415977.2015.1055263.  Google Scholar

[7]

F. Gazzola, H.-Ch. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, Springer-Verlag, Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-12245-3.  Google Scholar

[8]

L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Inc., Upper Saddle River, New Jersey, 2004.  Google Scholar

[9]

M. Harju, On the Direct and Inverse Scattering Problems for a Nonlinear Three-Dimensional Schrödinger Equation, PhD-thesis, University of Oulu, 2010. Google Scholar

[10]

K. KrupchykM. Lassas and G. Uhlmann, Determining a first order perturbation of the biharmonic operator by partial boundary measurements, Journal of Functional Analysis, 262 (2012), 1781-1801.  doi: 10.1016/j.jfa.2011.11.021.  Google Scholar

[11]

K. KrupchykM. Lassas and G. Uhlmann, Inverse boundary value problems for the perturbed polyharmonic operator, Trans Amer. Math. Soc., 366 (2014), 95-112.  doi: 10.1090/S0002-9947-2013-05713-3.  Google Scholar

[12]

N. N. Lebedev, Special Functions and Their Applications, Dover Publications, 1972.  Google Scholar

[13]

B. Pausander, Scattering for the beam equation in low dimensions, Indiana Univ. Math. J., 59 (2010), 791–822. arXiv: 0903.3777v2 [math.AP]. doi: 10.1512/iumj.2010.59.3966.  Google Scholar

[14]

V. S. Serov, An inverse Born approximation for the general nonlinear Schrödinger operator on the line, Journal of Physics A: Mathematical and Theoretical, 42 (2009), 332002. doi: 10.1088/1751-8113/42/33/332002.  Google Scholar

[15]

V. Serov, M. Harju and G. Fotopoulos, Direct and inverse scattering for nonlinear Schrödinger equation in 2D, Journal of Mathematical Physics, 53 (2012), 123522. doi: 10.1063/1.4769825.  Google Scholar

[16]

T. Tyni, Numerical results for Saito's uniqueness theorem in inverse scattering theory, Inverse Problems, 35 (2020), 065002. doi: 10.1088/1361-6420/ab7d2d.  Google Scholar

[17]

T. Tyni and V. Serov, Scattering problems for perturbations of the multidimensional biharmonic operator, Inverse Problems and Imaging, 12 (2018), 205-227.  doi: 10.3934/ipi.2018008.  Google Scholar

[18]

T. Tyni and M. Harju, Inverse backscattering problem for perturbations of biharmonic operator, Inverse Problems, 33 (2017), 105002. doi: 10.1088/1361-6420/aa873e.  Google Scholar

[19]

T. Tyni and V. Serov, Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line, Inverse Problems and Imaging, 13 (2019), 159-175.  doi: 10.3934/ipi.2019009.  Google Scholar

[20]

E. Zeidler, Applied Functional Analysis, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-0821-1.  Google Scholar

Figure 6), but their supports are intersecting">Figure 1.  The potentials $ \beta $ for Examples 1 (top left), 2 (top right), 3 (bottom left) and 4 (bottom right). In Example 1 we have only potential $ V $ which is a characteristic function of an ellipse. In Example 2 $ V $ is the characteristic function of an L-shaped domain and $ \overrightarrow{W} = (0,\varphi_2)\sin(|u|) $ has one component, where $ \varphi_2 $ is a smooth bump function in a circular domain. In Example 3 both components of $ \overrightarrow{W} = (\varphi_1\frac{|u|^2}{1+|u|^2},\varphi_2|u|^2) $ are multiplied by smooth bump functions $ \varphi_1 $ and $ \varphi_2 $ supported in ellipses located at the top and bottom right in the figure, respectively. The coefficient $ \varphi_3 $ of potential $ V $ is also a smooth bump function supported in an ellipse, located in the middle-left side of the figure. In example 4 all coefficients are smooth bump functions (see also Figure 6), but their supports are intersecting
Figure 2.  The scattered fields for Examples 1 (top left), 2 (top right), 3 (bottom left) and 4 (bottom right) with $ k = 25 $. The locations of the supports of the potentials are presented in black. Here the incident field is travelling from the left to the right
Figure 3.  Example 1. Left: The unknown target $ \beta $. Right: The numerical reconstruction $ \beta_ \mathrm{num} $
Figure 4.  Example 2. Left: The unknown target $ \beta $. Right: The numerical reconstruction $ \beta_ \mathrm{num} $. This example shows recovery of corners and recovery of a shape with piece-wise smooth boundary
Figure 5.  Example 3. Left: The unknown target $ \beta $. Right: The numerical reconstruction $ \beta_ \mathrm{num} $. We see that weak potentials are quite difficult to detect while stronger potentials are clearly visible in comparison, as is expected
Figure 6.  Example 4. Top left $ V(x,1) $, top middle $ W_1(x,1) $ and top right $ W_2(x,1) $. Bottom left: The unknown target $ \beta $. Bottom right: The numerical reconstruction $ \beta_ \mathrm{num} $. In this example the supports of potentials $ V $, $ W_1 $ and $ W_2 $ overlap. We can not distinguish these functions from each other
[1]

Teemu Tyni, Valery Serov. Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line. Inverse Problems & Imaging, 2019, 13 (1) : 159-175. doi: 10.3934/ipi.2019009

[2]

Siamak RabieniaHaratbar. Inverse scattering and stability for the biharmonic operator. Inverse Problems & Imaging, 2021, 15 (2) : 271-283. doi: 10.3934/ipi.2020064

[3]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[4]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems & Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

[5]

Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems & Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681

[6]

Weishi Yin, Jiawei Ge, Pinchao Meng, Fuheng Qu. A neural network method for the inverse scattering problem of impenetrable cavities. Electronic Research Archive, 2020, 28 (2) : 1123-1142. doi: 10.3934/era.2020062

[7]

Jiangfeng Huang, Zhiliang Deng, Liwei Xu. A Bayesian level set method for an inverse medium scattering problem in acoustics. Inverse Problems & Imaging, 2021, 15 (5) : 1077-1097. doi: 10.3934/ipi.2021029

[8]

Pasquale Candito, Giovanni Molica Bisci. Multiple solutions for a Navier boundary value problem involving the $p$--biharmonic operator. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 741-751. doi: 10.3934/dcdss.2012.5.741

[9]

Zhiming Chen, Shaofeng Fang, Guanghui Huang. A direct imaging method for the half-space inverse scattering problem with phaseless data. Inverse Problems & Imaging, 2017, 11 (5) : 901-916. doi: 10.3934/ipi.2017042

[10]

Yunwen Yin, Weishi Yin, Pinchao Meng, Hongyu Liu. The interior inverse scattering problem for a two-layered cavity using the Bayesian method. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021069

[11]

Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems & Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551

[12]

Teemu Tyni, Valery Serov. Scattering problems for perturbations of the multidimensional biharmonic operator. Inverse Problems & Imaging, 2018, 12 (1) : 205-227. doi: 10.3934/ipi.2018008

[13]

Yuxuan Gong, Xiang Xu. Inverse random source problem for biharmonic equation in two dimensions. Inverse Problems & Imaging, 2019, 13 (3) : 635-652. doi: 10.3934/ipi.2019029

[14]

Amadeu Delshams, Josep J. Masdemont, Pablo Roldán. Computing the scattering map in the spatial Hill's problem. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 455-483. doi: 10.3934/dcdsb.2008.10.455

[15]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[16]

Loc H. Nguyen, Qitong Li, Michael V. Klibanov. A convergent numerical method for a multi-frequency inverse source problem in inhomogenous media. Inverse Problems & Imaging, 2019, 13 (5) : 1067-1094. doi: 10.3934/ipi.2019048

[17]

Michael V. Klibanov, Dinh-Liem Nguyen, Loc H. Nguyen, Hui Liu. A globally convergent numerical method for a 3D coefficient inverse problem with a single measurement of multi-frequency data. Inverse Problems & Imaging, 2018, 12 (2) : 493-523. doi: 10.3934/ipi.2018021

[18]

Michael V. Klibanov, Loc H. Nguyen, Anders Sullivan, Lam Nguyen. A globally convergent numerical method for a 1-d inverse medium problem with experimental data. Inverse Problems & Imaging, 2016, 10 (4) : 1057-1085. doi: 10.3934/ipi.2016032

[19]

Michael V. Klibanov, Thuy T. Le, Loc H. Nguyen, Anders Sullivan, Lam Nguyen. Convexification-based globally convergent numerical method for a 1D coefficient inverse problem with experimental data. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021068

[20]

Benoît Pausader, Walter A. Strauss. Analyticity of the nonlinear scattering operator. Discrete & Continuous Dynamical Systems, 2009, 25 (2) : 617-626. doi: 10.3934/dcds.2009.25.617

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (178)
  • HTML views (274)
  • Cited by (0)

[Back to Top]