[1]
|
L. Banjai and S. Sauter, Rapid solution of the wave equation in unbounded domains, SIAM J. Numer. Anal., 47 (2008), 227-249.
doi: 10.1137/070690754.
|
[2]
|
G. Bao, Y. Gao and P. Li, Time domain analysis of an acoustic-elastic interaction problem, Arch. Ration. Mech. Anal., 229 (2018), 835-884.
doi: 10.1007/s00205-018-1228-2.
|
[3]
|
G. Bao, B. Hu, P. Li and J. Wang, Analysis of time-domain Maxwell's equations in biperiodic structures, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 259-286.
doi: 10.3934/dcdsb.2019181.
|
[4]
|
C. Burkard and R. Potthast, A time-domain probe method for three-dimensional rough surface reconstructions, Inverse Probl. Imaging, 3 (2009), 259-274.
doi: 10.3934/ipi.2009.3.259.
|
[5]
|
F. Cakoni, H. Haddar and A. Lechleiter, On the factorization method for a far field inverse scattering problem in the time domain, SIAM J. Math. Anal., 51 (2019), 854-872.
doi: 10.1137/18M1214809.
|
[6]
|
Z. Chen, Convergence of the time-domain perfectly matched layer method for acoustic scattering problems, Int. J. Numer. Anal. Model., 6 (2009), 124-146.
|
[7]
|
Q. Chen, H. Haddar, A. Lechleiter and P. Monk, A sampling method for inverse scattering in the time domain, Inverse Problems, 26 (2010), 085001, 17 pp.
doi: 10.1088/0266-5611/26/8/085001.
|
[8]
|
B. Chen, Y. Guo, F. Ma and Y. Sun, Numerical schemes to reconstruct three dimensional time-dependent point sources of acoustic waves, Inverse Problems, 36 (2020), 075009, 21 pp.
doi: 10.1088/1361-6420/ab8f85.
|
[9]
|
B. Chen, F. Ma and Y. Guo, Time domain scattering and inverse scattering problems in a locally perturbed half-plane, Appl. Anal., 96 (2017), 1303-1325.
doi: 10.1080/00036811.2016.1188288.
|
[10]
|
Z. Chen and J.-C. N$\acute{e}$d$\acute{e}$lec, On Maxwell equations with the transparent boundary condition, J. Comput. Math., 26 (2008), 284-296.
|
[11]
|
Z. Chen and X. Wu, Long-time stability and convergence of the uniaxial perfectly matched layer method for time-domain acoustic scattering problems, SIAM J. Numer. Anal., 50 (2012), 2632-2655.
doi: 10.1137/110835268.
|
[12]
|
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 3$^{nd}$ edition, Springer, New York, 2013.
doi: 10.1007/978-3-030-30351-8.
|
[13]
|
Y. Deng, J. Li and H. Liu, On identifying magnetized anomalies using geomagnetic monitoring, Arch. Ration. Mech. Anal., 231 (2019), 153-187.
doi: 10.1007/s00205-018-1276-7.
|
[14]
|
Y. Deng, H. Liu and G. Uhlmann, On an inverse boundary problem arising in brain imaging, J. Differential Equations, 267 (2019), 2471-2502.
doi: 10.1016/j.jde.2019.03.019.
|
[15]
|
H. Dong, J. Lai and P. Li, Inverse obstacle scattering for elastic waves with phased orphaseless far-field data, SIAM J. Imaging Sci., 12 (2019), 809-838.
doi: 10.1137/18M1227263.
|
[16]
|
H. Dong, J. Lai and P. Li, An inverse acoustic-elastic interaction problem with phased or phaseless far-field data, Inverse Problems, 36 (2020), 035014, 36 pp.
doi: 10.1088/1361-6420/ab693e.
|
[17]
|
H. Dong, D. Zhang and Y. Guo, A reference ball based iterative algorithm for imaging acoustic obstacle from phaseless far-field data, Inverse Probl. Imaging, 13 (2019), 177-195.
doi: 10.3934/ipi.2019010.
|
[18]
|
Y. Gao and P. Li, Analysis of time-domain scattering by periodic structures, J. Differential Equations, 261 (2016), 5094-5118.
doi: 10.1016/j.jde.2016.07.020.
|
[19]
|
Y. Gao and P. Li, Electromagnetic scattering for time-domain Maxwell's equations in an unbounded structure, Math. Models Methods Appl. Sci., 27 (2017), 1843-1870.
doi: 10.1142/S0218202517500336.
|
[20]
|
Y. Gao, P. Li and Y. Li, Analysis of time-domain elastic scattering by an unbounded structure, Math. Methods Appl. Sci., 41 (2018), 7032-7054.
doi: 10.1002/mma.5214.
|
[21]
|
Y. Gao, P. Li and B. Zhang, Analysis of transient acoustic-elastic interaction in an unbounded structure, SIAM J. Math. Anal., 49 (2017), 3951-3972.
doi: 10.1137/16M1090326.
|
[22]
|
Y. Guo, D. Hömberg, G. Hu, J. Li and H. Liu, A time domain sampling method for inverse acoustic scattering problems, J. Comput. Phys., 314 (2016), 647-660.
doi: 10.1016/j.jcp.2016.03.046.
|
[23]
|
Y. Guo, P. Monk and D. Colton, Toward a time domain approach to the linear sampling method, Inverse Problems, 29 (2013), 095016, 17 pp.
doi: 10.1088/0266-5611/29/9/095016.
|
[24]
|
Y. Guo, P. Monk and D. Colton, The linear sampling method for sparse small aperture data, Appl. Anal., 95 (2016), 1599-1615.
doi: 10.1080/00036811.2015.1065317.
|
[25]
|
H. Haddar, A. Lechleiter and S. Marmorat, An improved time domain linear sampling method for Robin and Neumann obstacles, Appl. Anal., 93 (2014), 369-390.
doi: 10.1080/00036811.2013.772583.
|
[26]
|
M. Ikehata, The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time interval: III. Sound-soft obstacle and bistatic data, Inverse Problems, 29 (2013), 085013, 35 pp.
doi: 10.1088/0266-5611/26/5/055010.
|
[27]
|
O. Ivanyshyn and T. Johansson, Nonlinear integral equation methods for the reconstruction of an acoustically sound-soft obstacle, J. Integral Equations Appl., 19 (2007), 289-308.
doi: 10.1216/jiea/1190905488.
|
[28]
|
T. Johansson and B. D. Sleeman, Reconstruction of an acoustically sound-soft obstacle from one incident field and the far-field pattern, IMA J. Appl. Math., 72 (2007), 96-112.
doi: 10.1093/imamat/hxl026.
|
[29]
|
A. Kirsch and S. Ritter, The Nyström method for solving a class of singular integral equations and applications in 3D late elasticity, Math. Method. Appl. Sci., 22 (1999), 177-197.
doi: 10.1002/(SICI)1099-1476(19990125)22:2<177::AID-MMA36>3.0.CO;2-F.
|
[30]
|
R. Kress, Newton's method for inverse obstacle scattering meets the method of least squares, Inverse Problems, 19 (2003), S91–S104.
doi: 10.1088/0266-5611/19/6/056.
|
[31]
|
J. Li, H. Liu, Z. Shang and H. Sun, Two single-shot methods for locating multiple electromagnetic scatterers, SIAM J. Appl. Math., 73 (2013), 1721-1746.
doi: 10.1137/130907690.
|
[32]
|
J. Li, H. Liu, Y. Sun and Q. Wang, Ground detection by a single electromagnetic measurement, J. Comput. Phys., 257, (2014), 554–571.
|
[33]
|
J. Li, H. Liu, H. Sun and J. Zou, Imaging obstacles by hypersingular point sources, Inverse Probl. Imaging, 7 (2013), 545-563.
doi: 10.3934/ipi.2013.7.545.
|
[34]
|
P. Li and L. Zhang, Analysis of transient acoustic scattering by an elastic obstacle, Commun. Math. Sci., 17 (2019), 1671-1698.
doi: 10.4310/CMS.2019.v17.n6.a8.
|
[35]
|
Y. Liu, Y. Guo and J. Sun, A deterministic-statistical approach to reconstruct moving sources using sparse partial data, 2021, arXiv: 2101.01290v2.
|
[36]
|
H. Liu and G. Uhlmann, Determining both sound speed and internal source in thermo- and photo-acoustic tomography, Inverse Problems, 31 (2015), 105005, 10 pp.
doi: 10.1088/0266-5611/31/10/105005.
|
[37]
|
D. R. Luke and R. Potthast, The point source method for inverse scattering in the time domain, Math. Methods Appl. Sci., 29 (2006), 1501-1521.
doi: 10.1002/mma.738.
|
[38]
|
F.-J. Sayas, Retarded Potentials and Time Domain Boundary Integral Equations, Springer, Switzerland, 2016.
doi: 10.1007/978-3-319-26645-9.
|
[39]
|
X. Wang, Y. Guo, J. Li and H. Liu, Mathematical design of a novel input/instruction device using a moving acoustic emitter, Inverse Problems, 33 (2017), 105009, 19 pp.
doi: 10.1088/1361-6420/aa873f.
|
[40]
|
X. Wang, Y. Guo, J. Li and H. Liu, Two gesture-computing approaches by using electromagnetic waves, Inverse Probl. Imaging, 13 (2019), 879-901.
doi: 10.3934/ipi.2019040.
|
[41]
|
X. Wang, Y. Guo, D. Zhang and H. Liu, Fourier method for recovering acoustic sources from multi-frequency far-field data, Inverse Problems, 33 (2017), 035001, 18 pp.
doi: 10.1088/1361-6420/aa573c.
|
[42]
|
D. Zhang, Y. Guo, J. Li and H. Liu, Locating multiple multipolar acoustic sources using the direct sampling method, Commun. Comput. Phys., 25 (2019), 1328–1356. arXiv: 1801.05584v1.
doi: 10.4208/cicp.oa-2018-0020.
|
[43]
|
L. Zhao, H. Dong and F. Ma, Time-domain analysis of forward obstacle scattering for elastic wave, Discrete Contin. Dyn. Syst. Ser. B, preprint.
doi: 10.3934/dcdsb.2020276.
|