In two dimensions, we consider the problem of inversion of the attenuated $ X $-ray transform of a compactly supported function from data restricted to lines leaning on a given arc. We provide a method to reconstruct the function on the convex hull of this arc. The attenuation is assumed known. The method of proof uses the Hilbert transform associated with $ A $-analytic functions in the sense of Bukhgeim.
Citation: |
Figure 3. Partial measurement data $ u(\zeta,\theta)|_{\Lambda\times {{\mathbf S}^ 1}} $ obtained by numerical computation of the attenuated Radon transform (4). The red curves are their polar coordinate representation $ \{ (u(\zeta,\theta),\theta) \::\: \theta \in {{\mathbf S}^ 1}\} $ and that at $ \zeta = (0,1) $ is magnified in the right graph. The pink areas show the regions of (known) higher absorption
Figure 6. Partial measurement data $ u(\zeta,\theta)|_{\Lambda\times {{\mathbf S}^ 1}} $ with $ 10.9\% $ noise in the relative $ L^2 $ norm, depicted in the same manner as in Figure 3.
Figure 7. Numerically reconstructed source $ f $ from partial measurement data with $ 10.9\% $ noise shown in Figure 6.
[1] |
E. V. Arbuzov and A. L. Bukhgeim, Carleman's formulas for $A$-analytic functions in a half-plane, J. Inv. Ill-Posed Problems, 5, (1997), 491–505.
doi: 10.1515/jiip.1997.5.6.491.![]() ![]() ![]() |
[2] |
E. V. Arzubov, A. L. Bukhgeim and S. G. Kazantsev, Two-dimensional tomography problems and the theory of A-analytic functions, Siberian Adv. Math., 8 (1998), 1-20.
![]() ![]() |
[3] |
G. Bal, On the attenuated Radon transform with full and partial measurements, Inverse Problems, 20 (2004), 399-418.
doi: 10.1088/0266-5611/20/2/006.![]() ![]() ![]() |
[4] |
J. Boman, On stable inversion of the attenuated Radon transform with half data, Integral Geometry and Tomography, Contemp. Math., 405 (2006), 19-26.
![]() ![]() |
[5] |
J. Boman, On stable region-of-interest reconstruction in tomography: Examples of non-existence of bounded inverse, Inverse Problems, 32 (2016), 125005.
doi: 10.1088/0266-5611/32/12/125005.![]() ![]() ![]() |
[6] |
J. Boman and J. -O. Strömberg, Novikov's inversion formula for the attenuated Radon transform–A new approach, J. Geom. Anal., 14 (2004), 185-198.
doi: 10.1007/BF02922067.![]() ![]() ![]() |
[7] |
J. Boman and E. T. Quinto, Support theorems for real-analytic Radon transforms, Duke Math. J., 55 (1987), 943-948.
doi: 10.1215/S0012-7094-87-05547-5.![]() ![]() ![]() |
[8] |
A. L. Bukhgeim, Inversion Formulas in Inverse Problems, in Linear Operators and Ill-Posed Problems (eds. M. M. Lavrentev and L. Ya. Savalev), Plenum, New York, (1995).
![]() |
[9] |
R. Clackdoyle and M. Defrise, Tomographic reconstruction in the 21st century, IEEE Signal Processing Magazine, 27 (2010), 60-80.
![]() |
[10] |
D. V. Finch, The attenuated x-ray transform: Recent developments, Inside Out: Inverse Problems and Applications, Math. Sci. Res. Inst. Publ., 47 (2003), 47-66.
![]() ![]() |
[11] |
H. Fujiwara, K. Sadiq and A. Tamasan, Numerical reconstruction of radiative sources in an absorbing and non-diffusing scattering medium in two dimensions, SIAM J. Imaging Sci., 13 (2020), 535-555.
doi: 10.1137/19M1282921.![]() ![]() ![]() |
[12] |
H. Fujiwara, K. Sadiq and A. Tamasan, On a local inversion of the X-ray transform from one sided data, Recent developments on inverse problems for PDE and their applications
![]() |
[13] |
S. Helgason, The Radon Transform, 2$^{nd}$ edition, Birkhäuser, Boston, 1999.
doi: 10.1007/978-1-4757-1463-0.![]() ![]() ![]() |
[14] |
S. G. Kazantsev and A. A. Bukhgeim, Inversion of the scalar and vector attenuated X-ray transforms in a unit disc, J. Inverse Ill-Posed Probl., 15 (2007), 735-765.
doi: 10.1515/jiip.2007.040.![]() ![]() ![]() |
[15] |
W. Koppelman and J. D. Pincus, Spectral representations for finite Hilbert transformations, Math. Z., 71 (1959), 399-407.
doi: 10.1007/BF01181411.![]() ![]() ![]() |
[16] |
P. Kuchment and I. Shneiberg, Some inversion formulae in the single photon emission computed tomography, Appl. Anal., 53 (1994), 221-231.
doi: 10.1080/00036819408840258.![]() ![]() ![]() |
[17] |
F. Monard, Efficient tensor tomography in fan-beam coordinates. II: Attenuated transforms, Inverse Probl. Imaging, 12 (2018), 433-460.
doi: 10.3934/ipi.2018019.![]() ![]() ![]() |
[18] |
N. I. Muskhelishvili, Singular Integral Equations, 2$^{nd}$ edition, Dover, New York, 1992.
![]() ![]() |
[19] |
F. Natterer, The Mathematics of Computerized Tomography, B. G. Teubner, Stuttgart; John Wiley & Sons, Ltd., Chichester, 1986.
![]() ![]() |
[20] |
F. Natterer, Inversion of the attenuated Radon transform, Inverse Problems, 17 (2001), 113-119.
doi: 10.1088/0266-5611/17/1/309.![]() ![]() ![]() |
[21] |
F. Noo, M. Defrise, J. D. Pack and R. Clackdoyle, Image reconstruction from truncated data in single-photon emission computed tomography with uniform attenuation, Inverse Problems, 23 (2007), 645-667.
doi: 10.1088/0266-5611/23/2/011.![]() ![]() ![]() |
[22] |
F. Noo and J. M. Wagner, Image reconstruction in 2D SPECT with $180^\circ$ acquisition, Inverse Problems, 17 (2001), 1357-1371.
doi: 10.1088/0266-5611/17/5/308.![]() ![]() ![]() |
[23] |
R. G. Novikov, Une formule d'inversion pour la transformation d'un rayonnement X atténué, C. R. Acad. Sci. Paris Sér. I Math., 332 (2001), 1059-1063.
doi: 10.1016/S0764-4442(01)01965-6.![]() ![]() ![]() |
[24] |
R. G. Novikov, On the range characterization for the two-dimensional attenuated x-ray transformation, Inverse Problems, 18 (2002), 677-700.
doi: 10.1088/0266-5611/18/3/310.![]() ![]() ![]() |
[25] |
S. Okada and D. Elliott, The finite Hilbert transform in $L^2$, Math. Nachr., 153 (1991), 43-56.
doi: 10.1002/mana.19911530105.![]() ![]() ![]() |
[26] |
X. Pan, C. Kao and C. Metz, A family of $\pi$-scheme exponential Radon transforms and the uniqueness of their inverses, Inverse Problems, 18 (2002), 825-836.
doi: 10.1088/0266-5611/18/3/319.![]() ![]() ![]() |
[27] |
J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Ber. Verh. Sachs. Akad. Wiss. Leipzig, Math-Nat., 69 (1917), 262-267.
![]() |
[28] |
H. Rullgård, An explicit inversion formula for the exponential Radon transform using data from $180^\circ$, Ark. Mat., 42 (2004), 353-362.
doi: 10.1007/BF02385485.![]() ![]() ![]() |
[29] |
H. Rullgård, Stability of the inverse problem for the attenuated Radon transform with $180^\circ$ data, Inverse Problems, 20 (2004), 781-797.
doi: 10.1088/0266-5611/20/3/008.![]() ![]() ![]() |
[30] |
K. Sadiq and A. Tamasan, On the range of the attenuated Radon transform in strictly convex sets, Trans. Amer. Math. Soc., 367 (2015), 5375-5398.
doi: 10.1090/S0002-9947-2014-06307-1.![]() ![]() ![]() |
[31] |
K. Sadiq and A. Tamasan, On the range characterization of the two dimensional attenuated Doppler transform, SIAM J. Math. Anal., 47 (2015), 2001-2021.
doi: 10.1137/140984282.![]() ![]() ![]() |
[32] |
K. Sadiq, O. Scherzer and A. Tamasan, On the X-ray transform of planar symmetric 2-tensors, J. Math. Anal. Appl., 442 (2016), 31-49.
doi: 10.1016/j.jmaa.2016.04.018.![]() ![]() ![]() |
[33] |
F. G. Tricomi, Integral Equations, Interscience, New York, 1957.
![]() ![]() |
[34] |
H. Widom, Singular integral equations in $L_p$, Trans. Amer. Math. Soc., 97 (1960), 131-160.
doi: 10.2307/1993367.![]() ![]() ![]() |
Geometric setup:
Setting of numerical experiments. The gray regions correspond to the support of the source
Partial measurement data
Numerical solutions on
Numerically reconstructed source
Partial measurement data
Numerically reconstructed source