doi: 10.3934/ipi.2021047
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Partial inversion of the 2D attenuated $ X $-ray transform with data on an arc

1. 

Graduate School of Informatics, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan

2. 

Johann Radon Institute of Computational and Applied Mathematics (RICAM), Altenbergerstrasse 69, 4040 Linz, Austria

3. 

Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA

* Corresponding author

Received  January 2021 Revised  May 2021 Early access July 2021

In two dimensions, we consider the problem of inversion of the attenuated $ X $-ray transform of a compactly supported function from data restricted to lines leaning on a given arc. We provide a method to reconstruct the function on the convex hull of this arc. The attenuation is assumed known. The method of proof uses the Hilbert transform associated with $ A $-analytic functions in the sense of Bukhgeim.

Citation: Hiroshi Fujiwara, Kamran Sadiq, Alexandru Tamasan. Partial inversion of the 2D attenuated $ X $-ray transform with data on an arc. Inverse Problems & Imaging, doi: 10.3934/ipi.2021047
References:
[1]

E. V. Arbuzov and A. L. Bukhgeim, Carleman's formulas for $A$-analytic functions in a half-plane, J. Inv. Ill-Posed Problems, 5, (1997), 491–505. doi: 10.1515/jiip.1997.5.6.491.  Google Scholar

[2]

E. V. ArzubovA. L. Bukhgeim and S. G. Kazantsev, Two-dimensional tomography problems and the theory of A-analytic functions, Siberian Adv. Math., 8 (1998), 1-20.   Google Scholar

[3]

G. Bal, On the attenuated Radon transform with full and partial measurements, Inverse Problems, 20 (2004), 399-418.  doi: 10.1088/0266-5611/20/2/006.  Google Scholar

[4]

J. Boman, On stable inversion of the attenuated Radon transform with half data, Integral Geometry and Tomography, Contemp. Math., 405 (2006), 19-26.   Google Scholar

[5]

J. Boman, On stable region-of-interest reconstruction in tomography: Examples of non-existence of bounded inverse, Inverse Problems, 32 (2016), 125005. doi: 10.1088/0266-5611/32/12/125005.  Google Scholar

[6]

J. Boman and J. -O. Strömberg, Novikov's inversion formula for the attenuated Radon transform–A new approach, J. Geom. Anal., 14 (2004), 185-198.  doi: 10.1007/BF02922067.  Google Scholar

[7]

J. Boman and E. T. Quinto, Support theorems for real-analytic Radon transforms, Duke Math. J., 55 (1987), 943-948.  doi: 10.1215/S0012-7094-87-05547-5.  Google Scholar

[8]

A. L. Bukhgeim, Inversion Formulas in Inverse Problems, in Linear Operators and Ill-Posed Problems (eds. M. M. Lavrentev and L. Ya. Savalev), Plenum, New York, (1995). Google Scholar

[9]

R. Clackdoyle and M. Defrise, Tomographic reconstruction in the 21st century, IEEE Signal Processing Magazine, 27 (2010), 60-80.   Google Scholar

[10]

D. V. Finch, The attenuated x-ray transform: Recent developments, Inside Out: Inverse Problems and Applications, Math. Sci. Res. Inst. Publ., 47 (2003), 47-66.   Google Scholar

[11]

H. FujiwaraK. Sadiq and A. Tamasan, Numerical reconstruction of radiative sources in an absorbing and non-diffusing scattering medium in two dimensions, SIAM J. Imaging Sci., 13 (2020), 535-555.  doi: 10.1137/19M1282921.  Google Scholar

[12]

H. Fujiwara, K. Sadiq and A. Tamasan, On a local inversion of the X-ray transform from one sided data, Recent developments on inverse problems for PDE and their applications Google Scholar

[13]

S. Helgason, The Radon Transform, 2$^{nd}$ edition, Birkhäuser, Boston, 1999. doi: 10.1007/978-1-4757-1463-0.  Google Scholar

[14]

S. G. Kazantsev and A. A. Bukhgeim, Inversion of the scalar and vector attenuated X-ray transforms in a unit disc, J. Inverse Ill-Posed Probl., 15 (2007), 735-765.  doi: 10.1515/jiip.2007.040.  Google Scholar

[15]

W. Koppelman and J. D. Pincus, Spectral representations for finite Hilbert transformations, Math. Z., 71 (1959), 399-407.  doi: 10.1007/BF01181411.  Google Scholar

[16]

P. Kuchment and I. Shneiberg, Some inversion formulae in the single photon emission computed tomography, Appl. Anal., 53 (1994), 221-231.  doi: 10.1080/00036819408840258.  Google Scholar

[17]

F. Monard, Efficient tensor tomography in fan-beam coordinates. II: Attenuated transforms, Inverse Probl. Imaging, 12 (2018), 433-460.  doi: 10.3934/ipi.2018019.  Google Scholar

[18]

N. I. Muskhelishvili, Singular Integral Equations, 2$^{nd}$ edition, Dover, New York, 1992.  Google Scholar

[19]

F. Natterer, The Mathematics of Computerized Tomography, B. G. Teubner, Stuttgart; John Wiley & Sons, Ltd., Chichester, 1986.  Google Scholar

[20]

F. Natterer, Inversion of the attenuated Radon transform, Inverse Problems, 17 (2001), 113-119.  doi: 10.1088/0266-5611/17/1/309.  Google Scholar

[21]

F. NooM. DefriseJ. D. Pack and R. Clackdoyle, Image reconstruction from truncated data in single-photon emission computed tomography with uniform attenuation, Inverse Problems, 23 (2007), 645-667.  doi: 10.1088/0266-5611/23/2/011.  Google Scholar

[22]

F. Noo and J. M. Wagner, Image reconstruction in 2D SPECT with $180^\circ$ acquisition, Inverse Problems, 17 (2001), 1357-1371.  doi: 10.1088/0266-5611/17/5/308.  Google Scholar

[23]

R. G. Novikov, Une formule d'inversion pour la transformation d'un rayonnement X atténué, C. R. Acad. Sci. Paris Sér. I Math., 332 (2001), 1059-1063.  doi: 10.1016/S0764-4442(01)01965-6.  Google Scholar

[24]

R. G. Novikov, On the range characterization for the two-dimensional attenuated x-ray transformation, Inverse Problems, 18 (2002), 677-700.  doi: 10.1088/0266-5611/18/3/310.  Google Scholar

[25]

S. Okada and D. Elliott, The finite Hilbert transform in $L^2$, Math. Nachr., 153 (1991), 43-56.  doi: 10.1002/mana.19911530105.  Google Scholar

[26]

X. PanC. Kao and C. Metz, A family of $\pi$-scheme exponential Radon transforms and the uniqueness of their inverses, Inverse Problems, 18 (2002), 825-836.  doi: 10.1088/0266-5611/18/3/319.  Google Scholar

[27]

J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Ber. Verh. Sachs. Akad. Wiss. Leipzig, Math-Nat., 69 (1917), 262-267.   Google Scholar

[28]

H. Rullgård, An explicit inversion formula for the exponential Radon transform using data from $180^\circ$, Ark. Mat., 42 (2004), 353-362.  doi: 10.1007/BF02385485.  Google Scholar

[29]

H. Rullgård, Stability of the inverse problem for the attenuated Radon transform with $180^\circ$ data, Inverse Problems, 20 (2004), 781-797.  doi: 10.1088/0266-5611/20/3/008.  Google Scholar

[30]

K. Sadiq and A. Tamasan, On the range of the attenuated Radon transform in strictly convex sets, Trans. Amer. Math. Soc., 367 (2015), 5375-5398.  doi: 10.1090/S0002-9947-2014-06307-1.  Google Scholar

[31]

K. Sadiq and A. Tamasan, On the range characterization of the two dimensional attenuated Doppler transform, SIAM J. Math. Anal., 47 (2015), 2001-2021.  doi: 10.1137/140984282.  Google Scholar

[32]

K. SadiqO. Scherzer and A. Tamasan, On the X-ray transform of planar symmetric 2-tensors, J. Math. Anal. Appl., 442 (2016), 31-49.  doi: 10.1016/j.jmaa.2016.04.018.  Google Scholar

[33]

F. G. Tricomi, Integral Equations, Interscience, New York, 1957.  Google Scholar

[34]

H. Widom, Singular integral equations in $L_p$, Trans. Amer. Math. Soc., 97 (1960), 131-160.  doi: 10.2307/1993367.  Google Scholar

show all references

References:
[1]

E. V. Arbuzov and A. L. Bukhgeim, Carleman's formulas for $A$-analytic functions in a half-plane, J. Inv. Ill-Posed Problems, 5, (1997), 491–505. doi: 10.1515/jiip.1997.5.6.491.  Google Scholar

[2]

E. V. ArzubovA. L. Bukhgeim and S. G. Kazantsev, Two-dimensional tomography problems and the theory of A-analytic functions, Siberian Adv. Math., 8 (1998), 1-20.   Google Scholar

[3]

G. Bal, On the attenuated Radon transform with full and partial measurements, Inverse Problems, 20 (2004), 399-418.  doi: 10.1088/0266-5611/20/2/006.  Google Scholar

[4]

J. Boman, On stable inversion of the attenuated Radon transform with half data, Integral Geometry and Tomography, Contemp. Math., 405 (2006), 19-26.   Google Scholar

[5]

J. Boman, On stable region-of-interest reconstruction in tomography: Examples of non-existence of bounded inverse, Inverse Problems, 32 (2016), 125005. doi: 10.1088/0266-5611/32/12/125005.  Google Scholar

[6]

J. Boman and J. -O. Strömberg, Novikov's inversion formula for the attenuated Radon transform–A new approach, J. Geom. Anal., 14 (2004), 185-198.  doi: 10.1007/BF02922067.  Google Scholar

[7]

J. Boman and E. T. Quinto, Support theorems for real-analytic Radon transforms, Duke Math. J., 55 (1987), 943-948.  doi: 10.1215/S0012-7094-87-05547-5.  Google Scholar

[8]

A. L. Bukhgeim, Inversion Formulas in Inverse Problems, in Linear Operators and Ill-Posed Problems (eds. M. M. Lavrentev and L. Ya. Savalev), Plenum, New York, (1995). Google Scholar

[9]

R. Clackdoyle and M. Defrise, Tomographic reconstruction in the 21st century, IEEE Signal Processing Magazine, 27 (2010), 60-80.   Google Scholar

[10]

D. V. Finch, The attenuated x-ray transform: Recent developments, Inside Out: Inverse Problems and Applications, Math. Sci. Res. Inst. Publ., 47 (2003), 47-66.   Google Scholar

[11]

H. FujiwaraK. Sadiq and A. Tamasan, Numerical reconstruction of radiative sources in an absorbing and non-diffusing scattering medium in two dimensions, SIAM J. Imaging Sci., 13 (2020), 535-555.  doi: 10.1137/19M1282921.  Google Scholar

[12]

H. Fujiwara, K. Sadiq and A. Tamasan, On a local inversion of the X-ray transform from one sided data, Recent developments on inverse problems for PDE and their applications Google Scholar

[13]

S. Helgason, The Radon Transform, 2$^{nd}$ edition, Birkhäuser, Boston, 1999. doi: 10.1007/978-1-4757-1463-0.  Google Scholar

[14]

S. G. Kazantsev and A. A. Bukhgeim, Inversion of the scalar and vector attenuated X-ray transforms in a unit disc, J. Inverse Ill-Posed Probl., 15 (2007), 735-765.  doi: 10.1515/jiip.2007.040.  Google Scholar

[15]

W. Koppelman and J. D. Pincus, Spectral representations for finite Hilbert transformations, Math. Z., 71 (1959), 399-407.  doi: 10.1007/BF01181411.  Google Scholar

[16]

P. Kuchment and I. Shneiberg, Some inversion formulae in the single photon emission computed tomography, Appl. Anal., 53 (1994), 221-231.  doi: 10.1080/00036819408840258.  Google Scholar

[17]

F. Monard, Efficient tensor tomography in fan-beam coordinates. II: Attenuated transforms, Inverse Probl. Imaging, 12 (2018), 433-460.  doi: 10.3934/ipi.2018019.  Google Scholar

[18]

N. I. Muskhelishvili, Singular Integral Equations, 2$^{nd}$ edition, Dover, New York, 1992.  Google Scholar

[19]

F. Natterer, The Mathematics of Computerized Tomography, B. G. Teubner, Stuttgart; John Wiley & Sons, Ltd., Chichester, 1986.  Google Scholar

[20]

F. Natterer, Inversion of the attenuated Radon transform, Inverse Problems, 17 (2001), 113-119.  doi: 10.1088/0266-5611/17/1/309.  Google Scholar

[21]

F. NooM. DefriseJ. D. Pack and R. Clackdoyle, Image reconstruction from truncated data in single-photon emission computed tomography with uniform attenuation, Inverse Problems, 23 (2007), 645-667.  doi: 10.1088/0266-5611/23/2/011.  Google Scholar

[22]

F. Noo and J. M. Wagner, Image reconstruction in 2D SPECT with $180^\circ$ acquisition, Inverse Problems, 17 (2001), 1357-1371.  doi: 10.1088/0266-5611/17/5/308.  Google Scholar

[23]

R. G. Novikov, Une formule d'inversion pour la transformation d'un rayonnement X atténué, C. R. Acad. Sci. Paris Sér. I Math., 332 (2001), 1059-1063.  doi: 10.1016/S0764-4442(01)01965-6.  Google Scholar

[24]

R. G. Novikov, On the range characterization for the two-dimensional attenuated x-ray transformation, Inverse Problems, 18 (2002), 677-700.  doi: 10.1088/0266-5611/18/3/310.  Google Scholar

[25]

S. Okada and D. Elliott, The finite Hilbert transform in $L^2$, Math. Nachr., 153 (1991), 43-56.  doi: 10.1002/mana.19911530105.  Google Scholar

[26]

X. PanC. Kao and C. Metz, A family of $\pi$-scheme exponential Radon transforms and the uniqueness of their inverses, Inverse Problems, 18 (2002), 825-836.  doi: 10.1088/0266-5611/18/3/319.  Google Scholar

[27]

J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Ber. Verh. Sachs. Akad. Wiss. Leipzig, Math-Nat., 69 (1917), 262-267.   Google Scholar

[28]

H. Rullgård, An explicit inversion formula for the exponential Radon transform using data from $180^\circ$, Ark. Mat., 42 (2004), 353-362.  doi: 10.1007/BF02385485.  Google Scholar

[29]

H. Rullgård, Stability of the inverse problem for the attenuated Radon transform with $180^\circ$ data, Inverse Problems, 20 (2004), 781-797.  doi: 10.1088/0266-5611/20/3/008.  Google Scholar

[30]

K. Sadiq and A. Tamasan, On the range of the attenuated Radon transform in strictly convex sets, Trans. Amer. Math. Soc., 367 (2015), 5375-5398.  doi: 10.1090/S0002-9947-2014-06307-1.  Google Scholar

[31]

K. Sadiq and A. Tamasan, On the range characterization of the two dimensional attenuated Doppler transform, SIAM J. Math. Anal., 47 (2015), 2001-2021.  doi: 10.1137/140984282.  Google Scholar

[32]

K. SadiqO. Scherzer and A. Tamasan, On the X-ray transform of planar symmetric 2-tensors, J. Math. Anal. Appl., 442 (2016), 31-49.  doi: 10.1016/j.jmaa.2016.04.018.  Google Scholar

[33]

F. G. Tricomi, Integral Equations, Interscience, New York, 1957.  Google Scholar

[34]

H. Widom, Singular integral equations in $L_p$, Trans. Amer. Math. Soc., 97 (1960), 131-160.  doi: 10.2307/1993367.  Google Scholar

Figure 1.  Geometric setup: $ \partial{ \Omega^+} = \Lambda\cup L $
Figure 2.  Setting of numerical experiments. The gray regions correspond to the support of the source $ f $, whereas the dotted circles delineate regions of high attenuation. Note that $ f $ is to be reconstructed only in the upper semi-disc
Figure 3.  Partial measurement data $ u(\zeta,\theta)|_{\Lambda\times {{\mathbf S}^ 1}} $ obtained by numerical computation of the attenuated Radon transform (4). The red curves are their polar coordinate representation $ \{ (u(\zeta,\theta),\theta) \::\: \theta \in {{\mathbf S}^ 1}\} $ and that at $ \zeta = (0,1) $ is magnified in the right graph. The pink areas show the regions of (known) higher absorption
Figure 4.  Numerical solutions on $ L $ to the singular integral equation (13), from $ u_{0} $ to $ u_{-5} $, real parts (left) and imaginary parts (right)
Figure 5.  Numerically reconstructed source $ f $ in $ \Omega^{+} $ (left), and its section on $ y = -\sqrt{3}x $ (right), which is indicated by the dotted line in the left figure
Figure 3.">Figure 6.  Partial measurement data $ u(\zeta,\theta)|_{\Lambda\times {{\mathbf S}^ 1}} $ with $ 10.9\% $ noise in the relative $ L^2 $ norm, depicted in the same manner as in Figure 3.
Figure 6.">Figure 7.  Numerically reconstructed source $ f $ from partial measurement data with $ 10.9\% $ noise shown in Figure 6.
[1]

Gareth Ainsworth. The attenuated magnetic ray transform on surfaces. Inverse Problems & Imaging, 2013, 7 (1) : 27-46. doi: 10.3934/ipi.2013.7.27

[2]

Dan Jane, Gabriel P. Paternain. On the injectivity of the X-ray transform for Anosov thermostats. Discrete & Continuous Dynamical Systems, 2009, 24 (2) : 471-487. doi: 10.3934/dcds.2009.24.471

[3]

Gareth Ainsworth, Yernat M. Assylbekov. On the range of the attenuated magnetic ray transform for connections and Higgs fields. Inverse Problems & Imaging, 2015, 9 (2) : 317-335. doi: 10.3934/ipi.2015.9.317

[4]

François Rouvière. X-ray transform on Damek-Ricci spaces. Inverse Problems & Imaging, 2010, 4 (4) : 713-720. doi: 10.3934/ipi.2010.4.713

[5]

Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems & Imaging, 2021, 15 (5) : 893-928. doi: 10.3934/ipi.2021021

[6]

Michael Krause, Jan Marcel Hausherr, Walter Krenkel. Computing the fibre orientation from Radon data using local Radon transform. Inverse Problems & Imaging, 2011, 5 (4) : 879-891. doi: 10.3934/ipi.2011.5.879

[7]

Aleksander Denisiuk. On range condition of the tensor x-ray transform in $ \mathbb R^n $. Inverse Problems & Imaging, 2020, 14 (3) : 423-435. doi: 10.3934/ipi.2020020

[8]

Jan Boman. Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform. Inverse Problems & Imaging, 2010, 4 (4) : 619-630. doi: 10.3934/ipi.2010.4.619

[9]

Doǧan Çömez. The modulated ergodic Hilbert transform. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 325-336. doi: 10.3934/dcdss.2009.2.325

[10]

Hans Rullgård, Eric Todd Quinto. Local Sobolev estimates of a function by means of its Radon transform. Inverse Problems & Imaging, 2010, 4 (4) : 721-734. doi: 10.3934/ipi.2010.4.721

[11]

Simon Gindikin. A remark on the weighted Radon transform on the plane. Inverse Problems & Imaging, 2010, 4 (4) : 649-653. doi: 10.3934/ipi.2010.4.649

[12]

Gareth Ainsworth. The magnetic ray transform on Anosov surfaces. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 1801-1816. doi: 10.3934/dcds.2015.35.1801

[13]

Yang Zhang. Artifacts in the inversion of the broken ray transform in the plane. Inverse Problems & Imaging, 2020, 14 (1) : 1-26. doi: 10.3934/ipi.2019061

[14]

Yiran Wang. Parametrices for the light ray transform on Minkowski spacetime. Inverse Problems & Imaging, 2018, 12 (1) : 229-237. doi: 10.3934/ipi.2018009

[15]

Sunghwan Moon. Inversion of the spherical Radon transform on spheres through the origin using the regular Radon transform. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1029-1039. doi: 10.3934/cpaa.2016.15.1029

[16]

Jean-François Crouzet. 3D coded aperture imaging, ill-posedness and link with incomplete data radon transform. Inverse Problems & Imaging, 2011, 5 (2) : 341-353. doi: 10.3934/ipi.2011.5.341

[17]

Victor Palamodov. Remarks on the general Funk transform and thermoacoustic tomography. Inverse Problems & Imaging, 2010, 4 (4) : 693-702. doi: 10.3934/ipi.2010.4.693

[18]

Ali Gholami, Mauricio D. Sacchi. Time-invariant radon transform by generalized Fourier slice theorem. Inverse Problems & Imaging, 2017, 11 (3) : 501-519. doi: 10.3934/ipi.2017023

[19]

Siamak RabieniaHaratbar. Support theorem for the Light-Ray transform of vector fields on Minkowski spaces. Inverse Problems & Imaging, 2018, 12 (2) : 293-314. doi: 10.3934/ipi.2018013

[20]

Venkateswaran P. Krishnan, Plamen Stefanov. A support theorem for the geodesic ray transform of symmetric tensor fields. Inverse Problems & Imaging, 2009, 3 (3) : 453-464. doi: 10.3934/ipi.2009.3.453

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (121)
  • HTML views (206)
  • Cited by (0)

[Back to Top]