• Previous Article
    Uniqueness and numerical reconstruction for inverse problems dealing with interval size search
  • IPI Home
  • This Issue
  • Next Article
    On numerical aspects of parameter identification for the Landau-Lifshitz-Gilbert equation in Magnetic Particle Imaging
doi: 10.3934/ipi.2021048
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Refined stability estimates in electrical impedance tomography with multi-layer structure

1. 

School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing Normal University, Beijing 100875, China

2. 

Institute of Applied Mathematical Sciences, National Taiwan University, Taipei 106, Taiwan

3. 

School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

* Corresponding author: Jenn-Nan Wang

Received  January 2021 Revised  May 2021 Early access July 2021

Fund Project: H.G. Li was partially supported by BJNSF (1202013) and NSFC (11631002, 11971061). J.N. Wang was supported in part by MOST 108-2115-M-002-002-MY3 and 109-2115-M-002-001-MY3

In this paper we study the inverse problem of determining an electrical inclusion in a multi-layer composite from boundary measurements in 2D. We assume the conductivities in different layers are different and derive a stability estimate for the linearized map with explicit formulae on the conductivity and the thickness of each layer. Intuitively, if an inclusion is surrounded by a highly conductive layer, then, in view of "the principle of the least work", the current will take a path in the highly conductive layer and disregard the existence of the inclusion. Consequently, a worse stability of identifying the hidden inclusion is expected in this case. Our estimates indeed show that the ill-posedness of the problem increases as long as the conductivity of some layer becomes large. This work is an extension of the previous result by Nagayasu-Uhlmann-Wang[15], where a depth-dependent estimate is derived when an inclusion is deeply hidden in a conductor. Estimates in this work also show the influence of the depth of the inclusion.

Citation: Haigang Li, Jenn-Nan Wang, Ling Wang. Refined stability estimates in electrical impedance tomography with multi-layer structure. Inverse Problems & Imaging, doi: 10.3934/ipi.2021048
References:
[1]

G. Alessandrini, Stable determination of conductivity by boundary measurements, Appl. Anal., 27 (1988), 153-172.  doi: 10.1080/00036818808839730.  Google Scholar

[2]

G. Alessandrini, Singular solutions of elliptic equations and the determination of conductivity by boundary measurements, J. Diff. Equations, 84 (1990), 252-272.  doi: 10.1016/0022-0396(90)90078-4.  Google Scholar

[3]

G. Alessandrini and M. D. Cristo, Stable determination of an inclusion by boundary measurements, SIAM J. Math. Anal., 37 (2005), 200-217.  doi: 10.1137/S003614100444191X.  Google Scholar

[4]

G. Alessandrini and R. Gaburro, Determining conductivity with special anisotropy by boundary measurements, SIAM J. Math. Anal., 33 (2001), 153-171.  doi: 10.1137/S0036141000369563.  Google Scholar

[5]

G. Alessandrini and R. Gaburro, The local Calderón problem and the determination at the boundary of the conductivity, Comm. Partial Differential Equations, 34 (2009), 918-936.  doi: 10.1080/03605300903017397.  Google Scholar

[6]

G. Alessandrini and A. Scapin, Depth dependent resolution in electrical impedance tomography, J. Inverse Ill-Posed Probl., 25 (2017), 391-402.  doi: 10.1515/jiip-2017-0029.  Google Scholar

[7]

A. Calderón, On an inverse boundary value problem, Seminar on Numerical Analysis and Its Applications to Continuum Physics, Sociedade Brasileira de Matemática, Río de Janeiro, Brazil, 1980, 65–73.  Google Scholar

[8]

H. Garde and N. Hyvonen, Optimal depth-dependent distinguishability bounds for electrical impedance tomography in arbitrary dimension, SIAM J. Appl. Math., 80 (2020), 20-43.  doi: 10.1137/19M1258761.  Google Scholar

[9]

H. Garde and K. Knudsen, Distinguishability revisited: Depth dependent bounds on reconstruction quality in electrical impedance tomography, SIAM J. Appl. Math., 77 (2017), 697-720.  doi: 10.1137/16M1072991.  Google Scholar

[10]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2$^{nd}$ edition, Springer-Verlag, Berlin Heidelberg, 2001.  Google Scholar

[11]

V. Isakov, On uniqueness of recovery of a discontinuous conductivity coefficient, Comm. Pure Appl. Math., 41 (1988), 865-877.  doi: 10.1002/cpa.3160410702.  Google Scholar

[12]

J. Jossinet, The impedivity of freshly excised human breast tissue, Physiological Measurement, 19 (1998), 61–75. doi: 10.1088/0967-3334/19/1/006.  Google Scholar

[13]

A. Lorenzi and C. D. Pagani, On the stability of the surface separating two homogeneous media with different thermal conductivities, Acta Math. Sci., 7 (1987), 411-429.  doi: 10.1016/S0252-9602(18)30464-8.  Google Scholar

[14]

N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation, Inverse Problems, 17 (2001), 1435-1444.  doi: 10.1088/0266-5611/17/5/313.  Google Scholar

[15]

S. Nagayasu, G. Uhlmann and J.-N. Wang, A depth-dependent stability estimate in electrical impedance tomography, Inverse Problems, 25 (2009), 075001. doi: 10.1088/0266-5611/25/7/075001.  Google Scholar

[16]

V. P. Palamodov, Gabor analysis of the continuum model for impedance tomography, Ark. Mat., 40 (2002), 169-187.  doi: 10.1007/BF02384508.  Google Scholar

[17]

J. Sylvester and G. Uhlmann, Inverse boundary value problems at the boundary: Continuous dependence, Comm. Pure Appl. Math., 41 (1988), 197-219.  doi: 10.1002/cpa.3160410205.  Google Scholar

[18]

G. Uhlmann and J. -N. Wang, Reconstructing discontinuities using complex geometrical optics solutions, SIAM J. Appl. Math., 68 (2008), 1026-1044.  doi: 10.1137/060676350.  Google Scholar

[19]

G. UhlmannJ. -N. Wang and C. -T. Wu, Reconstruction of inclusions in an elastic body, J. Math. Pures Appl., 91 (2009), 569-582.  doi: 10.1016/j.matpur.2009.01.006.  Google Scholar

show all references

References:
[1]

G. Alessandrini, Stable determination of conductivity by boundary measurements, Appl. Anal., 27 (1988), 153-172.  doi: 10.1080/00036818808839730.  Google Scholar

[2]

G. Alessandrini, Singular solutions of elliptic equations and the determination of conductivity by boundary measurements, J. Diff. Equations, 84 (1990), 252-272.  doi: 10.1016/0022-0396(90)90078-4.  Google Scholar

[3]

G. Alessandrini and M. D. Cristo, Stable determination of an inclusion by boundary measurements, SIAM J. Math. Anal., 37 (2005), 200-217.  doi: 10.1137/S003614100444191X.  Google Scholar

[4]

G. Alessandrini and R. Gaburro, Determining conductivity with special anisotropy by boundary measurements, SIAM J. Math. Anal., 33 (2001), 153-171.  doi: 10.1137/S0036141000369563.  Google Scholar

[5]

G. Alessandrini and R. Gaburro, The local Calderón problem and the determination at the boundary of the conductivity, Comm. Partial Differential Equations, 34 (2009), 918-936.  doi: 10.1080/03605300903017397.  Google Scholar

[6]

G. Alessandrini and A. Scapin, Depth dependent resolution in electrical impedance tomography, J. Inverse Ill-Posed Probl., 25 (2017), 391-402.  doi: 10.1515/jiip-2017-0029.  Google Scholar

[7]

A. Calderón, On an inverse boundary value problem, Seminar on Numerical Analysis and Its Applications to Continuum Physics, Sociedade Brasileira de Matemática, Río de Janeiro, Brazil, 1980, 65–73.  Google Scholar

[8]

H. Garde and N. Hyvonen, Optimal depth-dependent distinguishability bounds for electrical impedance tomography in arbitrary dimension, SIAM J. Appl. Math., 80 (2020), 20-43.  doi: 10.1137/19M1258761.  Google Scholar

[9]

H. Garde and K. Knudsen, Distinguishability revisited: Depth dependent bounds on reconstruction quality in electrical impedance tomography, SIAM J. Appl. Math., 77 (2017), 697-720.  doi: 10.1137/16M1072991.  Google Scholar

[10]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2$^{nd}$ edition, Springer-Verlag, Berlin Heidelberg, 2001.  Google Scholar

[11]

V. Isakov, On uniqueness of recovery of a discontinuous conductivity coefficient, Comm. Pure Appl. Math., 41 (1988), 865-877.  doi: 10.1002/cpa.3160410702.  Google Scholar

[12]

J. Jossinet, The impedivity of freshly excised human breast tissue, Physiological Measurement, 19 (1998), 61–75. doi: 10.1088/0967-3334/19/1/006.  Google Scholar

[13]

A. Lorenzi and C. D. Pagani, On the stability of the surface separating two homogeneous media with different thermal conductivities, Acta Math. Sci., 7 (1987), 411-429.  doi: 10.1016/S0252-9602(18)30464-8.  Google Scholar

[14]

N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation, Inverse Problems, 17 (2001), 1435-1444.  doi: 10.1088/0266-5611/17/5/313.  Google Scholar

[15]

S. Nagayasu, G. Uhlmann and J.-N. Wang, A depth-dependent stability estimate in electrical impedance tomography, Inverse Problems, 25 (2009), 075001. doi: 10.1088/0266-5611/25/7/075001.  Google Scholar

[16]

V. P. Palamodov, Gabor analysis of the continuum model for impedance tomography, Ark. Mat., 40 (2002), 169-187.  doi: 10.1007/BF02384508.  Google Scholar

[17]

J. Sylvester and G. Uhlmann, Inverse boundary value problems at the boundary: Continuous dependence, Comm. Pure Appl. Math., 41 (1988), 197-219.  doi: 10.1002/cpa.3160410205.  Google Scholar

[18]

G. Uhlmann and J. -N. Wang, Reconstructing discontinuities using complex geometrical optics solutions, SIAM J. Appl. Math., 68 (2008), 1026-1044.  doi: 10.1137/060676350.  Google Scholar

[19]

G. UhlmannJ. -N. Wang and C. -T. Wu, Reconstruction of inclusions in an elastic body, J. Math. Pures Appl., 91 (2009), 569-582.  doi: 10.1016/j.matpur.2009.01.006.  Google Scholar

[1]

Albert Clop, Daniel Faraco, Alberto Ruiz. Stability of Calderón's inverse conductivity problem in the plane for discontinuous conductivities. Inverse Problems & Imaging, 2010, 4 (1) : 49-91. doi: 10.3934/ipi.2010.4.49

[2]

Jussi Behrndt, A. F. M. ter Elst. The Dirichlet-to-Neumann map for Schrödinger operators with complex potentials. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 661-671. doi: 10.3934/dcdss.2017033

[3]

Mourad Bellassoued, David Dos Santos Ferreira. Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map. Inverse Problems & Imaging, 2011, 5 (4) : 745-773. doi: 10.3934/ipi.2011.5.745

[4]

Wolfgang Arendt, Rafe Mazzeo. Friedlander's eigenvalue inequalities and the Dirichlet-to-Neumann semigroup. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2201-2212. doi: 10.3934/cpaa.2012.11.2201

[5]

Victor Isakov, Jenn-Nan Wang. Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to-Neumann map. Inverse Problems & Imaging, 2014, 8 (4) : 1139-1150. doi: 10.3934/ipi.2014.8.1139

[6]

Oleg Yu. Imanuvilov, Masahiro Yamamoto. Stability for determination of Riemannian metrics by spectral data and Dirichlet-to-Neumann map limited on arbitrary subboundary. Inverse Problems & Imaging, 2019, 13 (6) : 1213-1258. doi: 10.3934/ipi.2019054

[7]

Ihsane Bikri, Ronald B. Guenther, Enrique A. Thomann. The Dirichlet to Neumann map - An application to the Stokes problem in half space. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 221-230. doi: 10.3934/dcdss.2010.3.221

[8]

Matteo Santacesaria. Note on Calderón's inverse problem for measurable conductivities. Inverse Problems & Imaging, 2019, 13 (1) : 149-157. doi: 10.3934/ipi.2019008

[9]

Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems & Imaging, 2014, 8 (4) : 1117-1137. doi: 10.3934/ipi.2014.8.1117

[10]

Fujun Zhou, Junde Wu, Shangbin Cui. Existence and asymptotic behavior of solutions to a moving boundary problem modeling the growth of multi-layer tumors. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1669-1688. doi: 10.3934/cpaa.2009.8.1669

[11]

Mahamadi Warma. A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2043-2067. doi: 10.3934/cpaa.2015.14.2043

[12]

Petteri Piiroinen, Martin Simon. Probabilistic interpretation of the Calderón problem. Inverse Problems & Imaging, 2017, 11 (3) : 553-575. doi: 10.3934/ipi.2017026

[13]

T. Tachim Medjo. Multi-layer quasi-geostrophic equations of the ocean with delays. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 171-196. doi: 10.3934/dcdsb.2008.10.171

[14]

Pedro Caro, Mikko Salo. Stability of the Calderón problem in admissible geometries. Inverse Problems & Imaging, 2014, 8 (4) : 939-957. doi: 10.3934/ipi.2014.8.939

[15]

Kevin Arfi, Anna Rozanova-Pierrat. Dirichlet-to-Neumann or Poincaré-Steklov operator on fractals described by d-sets. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 1-26. doi: 10.3934/dcdss.2019001

[16]

Victor Isakov. Increasing stability for the Schrödinger potential from the Dirichlet-to Neumann map. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 631-640. doi: 10.3934/dcdss.2011.4.631

[17]

Jinsen Zhuang, Yan Zhou, Yonghui Xia. Synchronization analysis of drive-response multi-layer dynamical networks with additive couplings and stochastic perturbations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1607-1629. doi: 10.3934/dcdss.2020279

[18]

Djano Kandaswamy, Thierry Blu, Dimitri Van De Ville. Analytic sensing for multi-layer spherical models with application to EEG source imaging. Inverse Problems & Imaging, 2013, 7 (4) : 1251-1270. doi: 10.3934/ipi.2013.7.1251

[19]

François Bouchut, Vladimir Zeitlin. A robust well-balanced scheme for multi-layer shallow water equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 739-758. doi: 10.3934/dcdsb.2010.13.739

[20]

T. Tachim Medjo. Averaging of a multi-layer quasi-geostrophic equations with oscillating external forces. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1119-1140. doi: 10.3934/cpaa.2014.13.1119

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (111)
  • HTML views (218)
  • Cited by (0)

Other articles
by authors

[Back to Top]