In this paper we study the inverse problem of determining an electrical inclusion in a multi-layer composite from boundary measurements in 2D. We assume the conductivities in different layers are different and derive a stability estimate for the linearized map with explicit formulae on the conductivity and the thickness of each layer. Intuitively, if an inclusion is surrounded by a highly conductive layer, then, in view of "the principle of the least work", the current will take a path in the highly conductive layer and disregard the existence of the inclusion. Consequently, a worse stability of identifying the hidden inclusion is expected in this case. Our estimates indeed show that the ill-posedness of the problem increases as long as the conductivity of some layer becomes large. This work is an extension of the previous result by Nagayasu-Uhlmann-Wang[
Citation: |
[1] |
G. Alessandrini, Stable determination of conductivity by boundary measurements, Appl. Anal., 27 (1988), 153-172.
doi: 10.1080/00036818808839730.![]() ![]() ![]() |
[2] |
G. Alessandrini, Singular solutions of elliptic equations and the determination of conductivity by boundary measurements, J. Diff. Equations, 84 (1990), 252-272.
doi: 10.1016/0022-0396(90)90078-4.![]() ![]() ![]() |
[3] |
G. Alessandrini and M. D. Cristo, Stable determination of an inclusion by boundary measurements, SIAM J. Math. Anal., 37 (2005), 200-217.
doi: 10.1137/S003614100444191X.![]() ![]() ![]() |
[4] |
G. Alessandrini and R. Gaburro, Determining conductivity with special anisotropy by boundary measurements, SIAM J. Math. Anal., 33 (2001), 153-171.
doi: 10.1137/S0036141000369563.![]() ![]() ![]() |
[5] |
G. Alessandrini and R. Gaburro, The local Calderón problem and the determination at the boundary of the conductivity, Comm. Partial Differential Equations, 34 (2009), 918-936.
doi: 10.1080/03605300903017397.![]() ![]() ![]() |
[6] |
G. Alessandrini and A. Scapin, Depth dependent resolution in electrical impedance tomography, J. Inverse Ill-Posed Probl., 25 (2017), 391-402.
doi: 10.1515/jiip-2017-0029.![]() ![]() ![]() |
[7] |
A. Calderón, On an inverse boundary value problem, Seminar on Numerical Analysis and Its Applications to Continuum Physics, Sociedade Brasileira de Matemática, Río de Janeiro, Brazil, 1980, 65–73.
![]() ![]() |
[8] |
H. Garde and N. Hyvonen, Optimal depth-dependent distinguishability bounds for electrical impedance tomography in arbitrary dimension, SIAM J. Appl. Math., 80 (2020), 20-43.
doi: 10.1137/19M1258761.![]() ![]() ![]() |
[9] |
H. Garde and K. Knudsen, Distinguishability revisited: Depth dependent bounds on reconstruction quality in electrical impedance tomography, SIAM J. Appl. Math., 77 (2017), 697-720.
doi: 10.1137/16M1072991.![]() ![]() ![]() |
[10] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2$^{nd}$ edition, Springer-Verlag, Berlin Heidelberg, 2001.
![]() ![]() |
[11] |
V. Isakov, On uniqueness of recovery of a discontinuous conductivity coefficient, Comm. Pure Appl. Math., 41 (1988), 865-877.
doi: 10.1002/cpa.3160410702.![]() ![]() ![]() |
[12] |
J. Jossinet, The impedivity of freshly excised human breast tissue, Physiological Measurement, 19 (1998), 61–75.
doi: 10.1088/0967-3334/19/1/006.![]() ![]() |
[13] |
A. Lorenzi and C. D. Pagani, On the stability of the surface separating two homogeneous media with different thermal conductivities, Acta Math. Sci., 7 (1987), 411-429.
doi: 10.1016/S0252-9602(18)30464-8.![]() ![]() ![]() |
[14] |
N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation, Inverse Problems, 17 (2001), 1435-1444.
doi: 10.1088/0266-5611/17/5/313.![]() ![]() ![]() |
[15] |
S. Nagayasu, G. Uhlmann and J.-N. Wang, A depth-dependent stability estimate in electrical impedance tomography, Inverse Problems, 25 (2009), 075001.
doi: 10.1088/0266-5611/25/7/075001.![]() ![]() ![]() |
[16] |
V. P. Palamodov, Gabor analysis of the continuum model for impedance tomography, Ark. Mat., 40 (2002), 169-187.
doi: 10.1007/BF02384508.![]() ![]() ![]() |
[17] |
J. Sylvester and G. Uhlmann, Inverse boundary value problems at the boundary: Continuous dependence, Comm. Pure Appl. Math., 41 (1988), 197-219.
doi: 10.1002/cpa.3160410205.![]() ![]() ![]() |
[18] |
G. Uhlmann and J. -N. Wang, Reconstructing discontinuities using complex geometrical optics solutions, SIAM J. Appl. Math., 68 (2008), 1026-1044.
doi: 10.1137/060676350.![]() ![]() ![]() |
[19] |
G. Uhlmann, J. -N. Wang and C. -T. Wu, Reconstruction of inclusions in an elastic body, J. Math. Pures Appl., 91 (2009), 569-582.
doi: 10.1016/j.matpur.2009.01.006.![]() ![]() ![]() |