doi: 10.3934/ipi.2021054
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

A fuzzy edge detector driven telegraph total variation model for image despeckling

1. 

School of Basic Sciences, Indian Institute of Technology Mandi, PIN 175005, INDIA

2. 

Department of Mathematics & Scientific Computing, National Institute of Technology Hamirpur, PIN 177005, INDIA

3. 

Department of Mathematics, Indian Institute of Technology Delhi, PIN 110016, INDIA

* Corresponding author: Rajendra K. Ray

Received  October 2020 Revised  May 2020 Early access September 2021

Speckle noise suppression is a challenging and crucial pre-processing stage for higher-level image analysis. In this work, a new attempt has been made using telegraph total variation equation and fuzzy set theory for image despeckling. The intuitionistic fuzzy divergence function has been used to distinguish between edges and noise. To the best of the authors' knowledge, most of the studies on the multiplicative speckle noise removal process focus only on diffusion-based filters, and little attention has been paid to the study of fuzzy set theory. The proposed approach enjoys the benefits of both telegraph total variation equation and fuzzy edge detector, which is robust to noise and preserves image structural details. Moreover, we establish the existence and uniqueness of weak solutions of a regularized version of the present system using the Schauder fixed point theorem. With the proposed technique, despeckling is carried out on natural, real synthetic aperture radar, and real ultrasound images. The experimental results computed by the suggested method are reported, which are found better in terms of noise elimination and detail/edge preservation, concerning the existing approaches.

Citation: Sudeb Majee, Subit K. Jain, Rajendra K. Ray, Ananta K. Majee. A fuzzy edge detector driven telegraph total variation model for image despeckling. Inverse Problems & Imaging, doi: 10.3934/ipi.2021054
References:
[1]

A. Achim, A. Bezerianos and P. Tsakalides, Novel Bayesian multiscale method for speckle removal in medical ultrasound images, IEEE Trans. Med. Imag., 20 (2001), 772-783. doi: 10.1109/42.938245.  Google Scholar

[2]

R. Adams, Sobolev Spaces. Pure and Applied Mathematics, vol. 65, Academic Press, New York, London, 1975.  Google Scholar

[3]

E. S. Agency, Esa earth online, https://earth.esa.int/handbooks/asar/CNTR1-4.html. Google Scholar

[4]

S. Aja, C. Alberola and A. Ruiz, Fuzzy anisotropic diffusion for speckle filtering, In 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 01CH37221), IEEE, 2 (2001), 1261-1264. Google Scholar

[5]

F. ArgentiA. LapiniT. Bianchi and L. Alparone, A tutorial on speckle reduction in synthetic aperture radar images, IEEE Geosci. Remote Sens. Mag., 1 (2013), 6-35.  doi: 10.1109/MGRS.2013.2277512.  Google Scholar

[6]

K. T. Atanassov, Intuitionistic fuzzy sets: Past, present and future, In EUSFLAT Conf., (2003), 12-19. Google Scholar

[7]

G. Aubert and J.-F. Aujol, A variational approach to removing multiplicative noise, SIAM J. Appl. Math., 68 (2008), 925-946.  doi: 10.1137/060671814.  Google Scholar

[8]

G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing, vol. 147, Appl. Math. Sci. Springer, New York, 2006.  Google Scholar

[9]

A. AverbuchB. EpsteinN. Rabin and E. Turkel, Edge-enhancement postprocessing using artificial dissipation, IEEE Trans. Image Process., 15 (2006), 1486-1498.  doi: 10.1109/TIP.2006.875734.  Google Scholar

[10]

J. J. J. Babu and G. F. Sudha, Adaptive speckle reduction in ultrasound images using fuzzy logic on coefficient of variation, Biomed. Signal. Process. Control., 23 (2016), 93-103.   Google Scholar

[11]

G. BaravdishO. SvenssonM. Gulliksson and Y. Zhang, Damped second order flow applied to image denoising, IMA J. Appl. Math., 84 (2019), 1082-1111.  doi: 10.1093/imamat/hxz027.  Google Scholar

[12]

Y. Becerikli and T. M. Karan, A new fuzzy approach for edge detection, In International Work-Conference on Artificial Neural Networks, Springer, (2005), 943-951. doi: 10.1007/11494669_116.  Google Scholar

[13]

K. Binaee and R. P. Hasanzadeh, An ultrasound image enhancement method using local gradient based fuzzy similarity, Biomed. Signal. Process. Control., 13 (2014), 89-101.  doi: 10.1016/j.bspc.2014.03.013.  Google Scholar

[14]

C. B. Burckhardt, Speckle in ultrasound B-mode scans, IEEE Trans. Sonics Ultrason., 25 (1978), 1-6.  doi: 10.1109/T-SU.1978.30978.  Google Scholar

[15]

Y. CaoJ. YinQ. Liu and M. Li, A class of nonlinear parabolic-hyperbolic equations applied to image restoration, Nonlinear Anal. Real World Appl., 11 (2010), 253-261.  doi: 10.1016/j.nonrwa.2008.11.004.  Google Scholar

[16]

T. Chaira and A. K. Ray, Segmentation using fuzzy divergence, Pattern Recognit. Lett., 24 (2003), 1837-1844.  doi: 10.1016/S0167-8655(03)00007-2.  Google Scholar

[17]

T. Chaira and A. Ray, A new measure using intuitionistic fuzzy set theory and its application to edge detection, Appl. Soft Comput., 8 (2008), 919-927.  doi: 10.1016/j.asoc.2007.07.004.  Google Scholar

[18]

P. Dewaele, P. Wambacq, A. Oosterlinck and J.-L. Marchand, Comparison of some speckle reduction techniques for sar images, In Geoscience and Remote Sensing Symposium, 1990. IGARSS'90.'Remote Sensing Science for the Nineties'., 10th Annual International, IEEE, (1990), 2417-2422. doi: 10.1109/IGARSS.1990.689028.  Google Scholar

[19]

G. Dong, Z. Guo and B. Wu, A convex adaptive total variation model based on the gray level indicator for multiplicative noise removal, In Abstr. Appl. Anal., 2013, (2013). doi: 10.1155/2013/912373.  Google Scholar

[20]

eoPortal: Sharing Earth Observation Resources, Kompsat-5, https://directory.eoportal.org/web/eoportal/satellite-missions/k/kompsat-5. Google Scholar

[21]

L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC press, 2015.  Google Scholar

[22]

L. Evans, Partial Differential Equations, Grad. Stud. Math., vol. 19, American Mathematical Society, Providence, RI, 1998.  Google Scholar

[23]

V. S. Frost, J. A. Stiles, K. S. Shanmugan and J. C. Holtzman, A model for radar images and its application to adaptive digital filtering of multiplicative noise, IEEE Trans. Pattern Anal. Mach. Intell., (1982), 157-166. doi: 10.1109/TPAMI.1982.4767223.  Google Scholar

[24]

R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2002. Google Scholar

[25]

J. W. Goodman, Some fundamental properties of speckle, JOSA, 66 (1976), 1145-1150.  doi: 10.1364/JOSA.66.001145.  Google Scholar

[26]

Y. HaoJ. XuS. Li and X. Zhang, A variational model based on split Bregman method for multiplicative noise removal, Int. J. Electron. Commun., 69 (2015), 1291-1296.  doi: 10.1016/j.aeue.2015.05.009.  Google Scholar

[27]

K. H. Ho and N. Ohnishi, Fedge fuzzy edge detection by fuzzy categorization and classification of edges, In International Workshop on Fuzzy Logic in Artificial Intelligence, Springer, 1188 (1995), 182-196. doi: 10.1007/3-540-62474-0_14.  Google Scholar

[28]

C. Hua and T. Jinwen, Speckle reduction of synthetic aperture radar images based on fuzzy logic, In First International Workshop on Education Technology and Computer Science, 1, IEEE, (2009), 933-937. doi: 10.1109/ETCS.2009.212.  Google Scholar

[29]

Y.-M. HuangM. K. Ng and Y.-W. Wen, A new total variation method for multiplicative noise removal, SIAM J. Imaging Sci., 2 (2009), 20-40.  doi: 10.1137/080712593.  Google Scholar

[30]

S. K. Jain and R. K. Ray, Edge detectors based telegraph total variational model for image filtering, In Information Systems Design and Intelligent Applications, Springer, 433 (2016), 119-126. doi: 10.1007/978-81-322-2755-7_13.  Google Scholar

[31]

S. K. Jain and R. K. Ray, Non-linear diffusion models for despeckling of images: Achievements and future challenges, IETE Technical Review, 37 (2020), 66-82.  doi: 10.1080/02564602.2019.1565960.  Google Scholar

[32]

S. K. JainR. K. Ray and A. Bhavsar, Iterative solvers for image denoising with diffusion models: A comparative study, Comput. Math. Appl., 70 (2015), 191-211.  doi: 10.1016/j.camwa.2015.04.009.  Google Scholar

[33]

S. K. JainR. K. Ray and A. Bhavsar, A nonlinear coupled diffusion system for image despeckling and application to ultrasound images, Circ. Syst. Signal Pr., 38 (2019), 1654-1683.  doi: 10.1007/s00034-018-0913-6.  Google Scholar

[34]

J. S. JinY. Wang and J. Hiller, An adaptive nonlinear diffusion algorithm for filtering medical images, IEEE Trans. Inf. Technol. Biomed., 4 (2000), 298-305.  doi: 10.1109/4233.897062.  Google Scholar

[35]

Z. Jin and X. Yang, Analysis of a new variational model for multiplicative noise removal, J. Math. Anal. Appl., 362 (2010), 415-426.  doi: 10.1016/j.jmaa.2009.08.036.  Google Scholar

[36]

G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall PTR, New Jersey, 1995.  Google Scholar

[37]

D. T. KuanA. A. SawchukT. C. Strand and P. Chavel, Adaptive noise smoothing filter for images with signal-dependent noise, IEEE Trans. Pattern Anal. Mach. Intell., 7 (1985), 165-177.  doi: 10.1109/TPAMI.1985.4767641.  Google Scholar

[38]

J.-S. Lee, Digital image enhancement and noise filtering by use of local statistics, IEEE Trans. Pattern Anal. Mach. Intell., 2 (1980), 165-168.  doi: 10.1109/TPAMI.1980.4766994.  Google Scholar

[39]

M. Liu and Q. Fan, A modified convex variational model for multiplicative noise removal, J. Vis. Commun. Image Represent., 36 (2016), 187-198.  doi: 10.1016/j.jvcir.2016.01.014.  Google Scholar

[40]

Q. LiuX. Li and T. Gao, A nondivergence p-Laplace equation in a removing multiplicative noise model, Nonlinear Anal. Real World Appl., 14 (2013), 2046-2058.  doi: 10.1016/j.nonrwa.2013.02.008.  Google Scholar

[41]

S. MajeeS. K. JainR. K. Ray and A. K. Majee, On the development of a coupled nonlinear telegraph-diffusion model for image restoration, Comput. Math. Appl., 80 (2020), 1745-1766.  doi: 10.1016/j.camwa.2020.08.010.  Google Scholar

[42]

S. MajeeR. K. Ray and A. K. Majee, A gray level indicator-based regularized telegraph diffusion model: Application to image despeckling, SIAM J. Imaging Sci., 13 (2020), 844-870.  doi: 10.1137/19M1283033.  Google Scholar

[43]

A. MittalA. K. Moorthy and A. C. Bovik, No-reference image quality assessment in the spatial domain, IEEE Trans. Image Process., 21 (2012), 4695-4708.  doi: 10.1109/TIP.2012.2214050.  Google Scholar

[44]

M. NadeemA. Hussain and A. Munir, Fuzzy logic based computational model for speckle noise removal in ultrasound images, Multimed. Tools. Appl., 78 (2019), 18531-18548.  doi: 10.1007/s11042-019-7221-4.  Google Scholar

[45]

R. Prager, A. Gee, G. Treece and L. Berman, Speckle detection in ultrasound images using first order statistics, University of Cambridge, Department of Engineering. Google Scholar

[46]

V. S. Prasath and R. Delhibabu, Image restoration with fuzzy coefficient driven anisotropic diffusion, In International Conference on Swarm, Evolutionary, and Memetic Computing, 8947, Springer, (2015), 145-155. doi: 10.1007/978-3-319-20294-5_13.  Google Scholar

[47]

V. Ratner and Y. Y. Zeevi, Image enhancement using elastic manifolds, In Proceedings of the 14th International Conference on Image Analysis and Processing, ICIAP 2007, IEEE, (2007), 769-774. doi: 10.1109/ICIAP.2007.4362869.  Google Scholar

[48]

V. Ratner and Y. Y. Zeevi, Denoising-enhancing images on elastic manifolds, IEEE Trans. Image Process., 20 (2011), 2099-2109.  doi: 10.1109/TIP.2011.2118221.  Google Scholar

[49]

L. Rudin, P.-L. Lions and S. Osher, Multiplicative denoising and deblurring: Theory and algorithms, In Geometric Level Set Methods in Imaging, Vision, and Graphics, Springer, 2003,103-119. doi: 10.1007/0-387-21810-6_6.  Google Scholar

[50]

X. ShanJ. Sun and Z. Guo, Multiplicative noise removal based on the smooth diffusion equation, J. Math. Imag. Vis., 61 (2019), 763-779.  doi: 10.1007/s10851-018-00870-z.  Google Scholar

[51]

J. Shi and S. Osher, A nonlinear inverse scale space method for a convex multiplicative noise model, SIAM J. Imaging Sci., 1 (2008), 294-321.  doi: 10.1137/070689954.  Google Scholar

[52]

J. Song and H. Tizhoosh, Fuzzy anisotropic diffusion: A rule-based approach, In Proceeding of the 7th World Multiconference on Systemics, Cyebernetics and Informatics, (2003), 241-246. Google Scholar

[53]

E. Szmidt and J. Kacprzyk, Distances between intuitionistic fuzzy sets, Fuzzy Sets Syst., 114 (2000), 505-518.  doi: 10.1016/S0165-0114(98)00244-9.  Google Scholar

[54]

D. N. ThanhV. S. Prasath and S. Dvoenko et al., An adaptive method for image restoration based on high-order total variation and inverse gradient, Signal, Image and Video Process., 14 (2020), 1189-1197.  doi: 10.1007/s11760-020-01657-9.  Google Scholar

[55]

M. TurK.-C. Chin and J. W. Goodman, When is speckle noise multiplicative?, Applied Optics, 21 (1982), 1157-1159.  doi: 10.1364/AO.21.001157.  Google Scholar

[56]

Z. WangA. C. BovikH. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612.  doi: 10.1109/TIP.2003.819861.  Google Scholar

[57]

J. Weickert, Anisotropic Diffusion in Image Processing, Teubner Stuttgart, 1998.  Google Scholar

[58]

Y. Yu and S. T. Acton, Speckle reducing anisotropic diffusion, IEEE Trans. Image Process., 11 (2002), 1260-1270.  doi: 10.1109/TIP.2002.804276.  Google Scholar

[59]

E. Zauderer, Partial Differential Equations of Applied Mathematics, John Wiley & Sons, 1983.  Google Scholar

[60]

W. ZhangJ. Li and Y. Yang, A class of nonlocal tensor telegraph-diffusion equations applied to coherence enhancement, Comput. Math. Appl., 67 (2014), 1461-1473.  doi: 10.1016/j.camwa.2014.02.013.  Google Scholar

[61]

Z. ZhouZ. GuoG. DongJ. SunD. Zhang and B. Wu, A doubly degenerate diffusion model based on the gray level indicator for multiplicative noise removal, IEEE Trans. Image Process., 24 (2015), 249-260.  doi: 10.1109/TIP.2014.2376185.  Google Scholar

[62]

Z. ZhouZ. GuoD. Zhang and B. Wu, A nonlinear diffusion equation-based model for ultrasound speckle noise removal, J. Nonlinear Sci., 28 (2018), 443-470.  doi: 10.1007/s00332-017-9414-1.  Google Scholar

show all references

References:
[1]

A. Achim, A. Bezerianos and P. Tsakalides, Novel Bayesian multiscale method for speckle removal in medical ultrasound images, IEEE Trans. Med. Imag., 20 (2001), 772-783. doi: 10.1109/42.938245.  Google Scholar

[2]

R. Adams, Sobolev Spaces. Pure and Applied Mathematics, vol. 65, Academic Press, New York, London, 1975.  Google Scholar

[3]

E. S. Agency, Esa earth online, https://earth.esa.int/handbooks/asar/CNTR1-4.html. Google Scholar

[4]

S. Aja, C. Alberola and A. Ruiz, Fuzzy anisotropic diffusion for speckle filtering, In 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 01CH37221), IEEE, 2 (2001), 1261-1264. Google Scholar

[5]

F. ArgentiA. LapiniT. Bianchi and L. Alparone, A tutorial on speckle reduction in synthetic aperture radar images, IEEE Geosci. Remote Sens. Mag., 1 (2013), 6-35.  doi: 10.1109/MGRS.2013.2277512.  Google Scholar

[6]

K. T. Atanassov, Intuitionistic fuzzy sets: Past, present and future, In EUSFLAT Conf., (2003), 12-19. Google Scholar

[7]

G. Aubert and J.-F. Aujol, A variational approach to removing multiplicative noise, SIAM J. Appl. Math., 68 (2008), 925-946.  doi: 10.1137/060671814.  Google Scholar

[8]

G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing, vol. 147, Appl. Math. Sci. Springer, New York, 2006.  Google Scholar

[9]

A. AverbuchB. EpsteinN. Rabin and E. Turkel, Edge-enhancement postprocessing using artificial dissipation, IEEE Trans. Image Process., 15 (2006), 1486-1498.  doi: 10.1109/TIP.2006.875734.  Google Scholar

[10]

J. J. J. Babu and G. F. Sudha, Adaptive speckle reduction in ultrasound images using fuzzy logic on coefficient of variation, Biomed. Signal. Process. Control., 23 (2016), 93-103.   Google Scholar

[11]

G. BaravdishO. SvenssonM. Gulliksson and Y. Zhang, Damped second order flow applied to image denoising, IMA J. Appl. Math., 84 (2019), 1082-1111.  doi: 10.1093/imamat/hxz027.  Google Scholar

[12]

Y. Becerikli and T. M. Karan, A new fuzzy approach for edge detection, In International Work-Conference on Artificial Neural Networks, Springer, (2005), 943-951. doi: 10.1007/11494669_116.  Google Scholar

[13]

K. Binaee and R. P. Hasanzadeh, An ultrasound image enhancement method using local gradient based fuzzy similarity, Biomed. Signal. Process. Control., 13 (2014), 89-101.  doi: 10.1016/j.bspc.2014.03.013.  Google Scholar

[14]

C. B. Burckhardt, Speckle in ultrasound B-mode scans, IEEE Trans. Sonics Ultrason., 25 (1978), 1-6.  doi: 10.1109/T-SU.1978.30978.  Google Scholar

[15]

Y. CaoJ. YinQ. Liu and M. Li, A class of nonlinear parabolic-hyperbolic equations applied to image restoration, Nonlinear Anal. Real World Appl., 11 (2010), 253-261.  doi: 10.1016/j.nonrwa.2008.11.004.  Google Scholar

[16]

T. Chaira and A. K. Ray, Segmentation using fuzzy divergence, Pattern Recognit. Lett., 24 (2003), 1837-1844.  doi: 10.1016/S0167-8655(03)00007-2.  Google Scholar

[17]

T. Chaira and A. Ray, A new measure using intuitionistic fuzzy set theory and its application to edge detection, Appl. Soft Comput., 8 (2008), 919-927.  doi: 10.1016/j.asoc.2007.07.004.  Google Scholar

[18]

P. Dewaele, P. Wambacq, A. Oosterlinck and J.-L. Marchand, Comparison of some speckle reduction techniques for sar images, In Geoscience and Remote Sensing Symposium, 1990. IGARSS'90.'Remote Sensing Science for the Nineties'., 10th Annual International, IEEE, (1990), 2417-2422. doi: 10.1109/IGARSS.1990.689028.  Google Scholar

[19]

G. Dong, Z. Guo and B. Wu, A convex adaptive total variation model based on the gray level indicator for multiplicative noise removal, In Abstr. Appl. Anal., 2013, (2013). doi: 10.1155/2013/912373.  Google Scholar

[20]

eoPortal: Sharing Earth Observation Resources, Kompsat-5, https://directory.eoportal.org/web/eoportal/satellite-missions/k/kompsat-5. Google Scholar

[21]

L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC press, 2015.  Google Scholar

[22]

L. Evans, Partial Differential Equations, Grad. Stud. Math., vol. 19, American Mathematical Society, Providence, RI, 1998.  Google Scholar

[23]

V. S. Frost, J. A. Stiles, K. S. Shanmugan and J. C. Holtzman, A model for radar images and its application to adaptive digital filtering of multiplicative noise, IEEE Trans. Pattern Anal. Mach. Intell., (1982), 157-166. doi: 10.1109/TPAMI.1982.4767223.  Google Scholar

[24]

R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2002. Google Scholar

[25]

J. W. Goodman, Some fundamental properties of speckle, JOSA, 66 (1976), 1145-1150.  doi: 10.1364/JOSA.66.001145.  Google Scholar

[26]

Y. HaoJ. XuS. Li and X. Zhang, A variational model based on split Bregman method for multiplicative noise removal, Int. J. Electron. Commun., 69 (2015), 1291-1296.  doi: 10.1016/j.aeue.2015.05.009.  Google Scholar

[27]

K. H. Ho and N. Ohnishi, Fedge fuzzy edge detection by fuzzy categorization and classification of edges, In International Workshop on Fuzzy Logic in Artificial Intelligence, Springer, 1188 (1995), 182-196. doi: 10.1007/3-540-62474-0_14.  Google Scholar

[28]

C. Hua and T. Jinwen, Speckle reduction of synthetic aperture radar images based on fuzzy logic, In First International Workshop on Education Technology and Computer Science, 1, IEEE, (2009), 933-937. doi: 10.1109/ETCS.2009.212.  Google Scholar

[29]

Y.-M. HuangM. K. Ng and Y.-W. Wen, A new total variation method for multiplicative noise removal, SIAM J. Imaging Sci., 2 (2009), 20-40.  doi: 10.1137/080712593.  Google Scholar

[30]

S. K. Jain and R. K. Ray, Edge detectors based telegraph total variational model for image filtering, In Information Systems Design and Intelligent Applications, Springer, 433 (2016), 119-126. doi: 10.1007/978-81-322-2755-7_13.  Google Scholar

[31]

S. K. Jain and R. K. Ray, Non-linear diffusion models for despeckling of images: Achievements and future challenges, IETE Technical Review, 37 (2020), 66-82.  doi: 10.1080/02564602.2019.1565960.  Google Scholar

[32]

S. K. JainR. K. Ray and A. Bhavsar, Iterative solvers for image denoising with diffusion models: A comparative study, Comput. Math. Appl., 70 (2015), 191-211.  doi: 10.1016/j.camwa.2015.04.009.  Google Scholar

[33]

S. K. JainR. K. Ray and A. Bhavsar, A nonlinear coupled diffusion system for image despeckling and application to ultrasound images, Circ. Syst. Signal Pr., 38 (2019), 1654-1683.  doi: 10.1007/s00034-018-0913-6.  Google Scholar

[34]

J. S. JinY. Wang and J. Hiller, An adaptive nonlinear diffusion algorithm for filtering medical images, IEEE Trans. Inf. Technol. Biomed., 4 (2000), 298-305.  doi: 10.1109/4233.897062.  Google Scholar

[35]

Z. Jin and X. Yang, Analysis of a new variational model for multiplicative noise removal, J. Math. Anal. Appl., 362 (2010), 415-426.  doi: 10.1016/j.jmaa.2009.08.036.  Google Scholar

[36]

G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall PTR, New Jersey, 1995.  Google Scholar

[37]

D. T. KuanA. A. SawchukT. C. Strand and P. Chavel, Adaptive noise smoothing filter for images with signal-dependent noise, IEEE Trans. Pattern Anal. Mach. Intell., 7 (1985), 165-177.  doi: 10.1109/TPAMI.1985.4767641.  Google Scholar

[38]

J.-S. Lee, Digital image enhancement and noise filtering by use of local statistics, IEEE Trans. Pattern Anal. Mach. Intell., 2 (1980), 165-168.  doi: 10.1109/TPAMI.1980.4766994.  Google Scholar

[39]

M. Liu and Q. Fan, A modified convex variational model for multiplicative noise removal, J. Vis. Commun. Image Represent., 36 (2016), 187-198.  doi: 10.1016/j.jvcir.2016.01.014.  Google Scholar

[40]

Q. LiuX. Li and T. Gao, A nondivergence p-Laplace equation in a removing multiplicative noise model, Nonlinear Anal. Real World Appl., 14 (2013), 2046-2058.  doi: 10.1016/j.nonrwa.2013.02.008.  Google Scholar

[41]

S. MajeeS. K. JainR. K. Ray and A. K. Majee, On the development of a coupled nonlinear telegraph-diffusion model for image restoration, Comput. Math. Appl., 80 (2020), 1745-1766.  doi: 10.1016/j.camwa.2020.08.010.  Google Scholar

[42]

S. MajeeR. K. Ray and A. K. Majee, A gray level indicator-based regularized telegraph diffusion model: Application to image despeckling, SIAM J. Imaging Sci., 13 (2020), 844-870.  doi: 10.1137/19M1283033.  Google Scholar

[43]

A. MittalA. K. Moorthy and A. C. Bovik, No-reference image quality assessment in the spatial domain, IEEE Trans. Image Process., 21 (2012), 4695-4708.  doi: 10.1109/TIP.2012.2214050.  Google Scholar

[44]

M. NadeemA. Hussain and A. Munir, Fuzzy logic based computational model for speckle noise removal in ultrasound images, Multimed. Tools. Appl., 78 (2019), 18531-18548.  doi: 10.1007/s11042-019-7221-4.  Google Scholar

[45]

R. Prager, A. Gee, G. Treece and L. Berman, Speckle detection in ultrasound images using first order statistics, University of Cambridge, Department of Engineering. Google Scholar

[46]

V. S. Prasath and R. Delhibabu, Image restoration with fuzzy coefficient driven anisotropic diffusion, In International Conference on Swarm, Evolutionary, and Memetic Computing, 8947, Springer, (2015), 145-155. doi: 10.1007/978-3-319-20294-5_13.  Google Scholar

[47]

V. Ratner and Y. Y. Zeevi, Image enhancement using elastic manifolds, In Proceedings of the 14th International Conference on Image Analysis and Processing, ICIAP 2007, IEEE, (2007), 769-774. doi: 10.1109/ICIAP.2007.4362869.  Google Scholar

[48]

V. Ratner and Y. Y. Zeevi, Denoising-enhancing images on elastic manifolds, IEEE Trans. Image Process., 20 (2011), 2099-2109.  doi: 10.1109/TIP.2011.2118221.  Google Scholar

[49]

L. Rudin, P.-L. Lions and S. Osher, Multiplicative denoising and deblurring: Theory and algorithms, In Geometric Level Set Methods in Imaging, Vision, and Graphics, Springer, 2003,103-119. doi: 10.1007/0-387-21810-6_6.  Google Scholar

[50]

X. ShanJ. Sun and Z. Guo, Multiplicative noise removal based on the smooth diffusion equation, J. Math. Imag. Vis., 61 (2019), 763-779.  doi: 10.1007/s10851-018-00870-z.  Google Scholar

[51]

J. Shi and S. Osher, A nonlinear inverse scale space method for a convex multiplicative noise model, SIAM J. Imaging Sci., 1 (2008), 294-321.  doi: 10.1137/070689954.  Google Scholar

[52]

J. Song and H. Tizhoosh, Fuzzy anisotropic diffusion: A rule-based approach, In Proceeding of the 7th World Multiconference on Systemics, Cyebernetics and Informatics, (2003), 241-246. Google Scholar

[53]

E. Szmidt and J. Kacprzyk, Distances between intuitionistic fuzzy sets, Fuzzy Sets Syst., 114 (2000), 505-518.  doi: 10.1016/S0165-0114(98)00244-9.  Google Scholar

[54]

D. N. ThanhV. S. Prasath and S. Dvoenko et al., An adaptive method for image restoration based on high-order total variation and inverse gradient, Signal, Image and Video Process., 14 (2020), 1189-1197.  doi: 10.1007/s11760-020-01657-9.  Google Scholar

[55]

M. TurK.-C. Chin and J. W. Goodman, When is speckle noise multiplicative?, Applied Optics, 21 (1982), 1157-1159.  doi: 10.1364/AO.21.001157.  Google Scholar

[56]

Z. WangA. C. BovikH. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612.  doi: 10.1109/TIP.2003.819861.  Google Scholar

[57]

J. Weickert, Anisotropic Diffusion in Image Processing, Teubner Stuttgart, 1998.  Google Scholar

[58]

Y. Yu and S. T. Acton, Speckle reducing anisotropic diffusion, IEEE Trans. Image Process., 11 (2002), 1260-1270.  doi: 10.1109/TIP.2002.804276.  Google Scholar

[59]

E. Zauderer, Partial Differential Equations of Applied Mathematics, John Wiley & Sons, 1983.  Google Scholar

[60]

W. ZhangJ. Li and Y. Yang, A class of nonlocal tensor telegraph-diffusion equations applied to coherence enhancement, Comput. Math. Appl., 67 (2014), 1461-1473.  doi: 10.1016/j.camwa.2014.02.013.  Google Scholar

[61]

Z. ZhouZ. GuoG. DongJ. SunD. Zhang and B. Wu, A doubly degenerate diffusion model based on the gray level indicator for multiplicative noise removal, IEEE Trans. Image Process., 24 (2015), 249-260.  doi: 10.1109/TIP.2014.2376185.  Google Scholar

[62]

Z. ZhouZ. GuoD. Zhang and B. Wu, A nonlinear diffusion equation-based model for ultrasound speckle noise removal, J. Nonlinear Sci., 28 (2018), 443-470.  doi: 10.1007/s00332-017-9414-1.  Google Scholar

Figure 1.  Set of sixteen $ 3 \times 3 $ templates
Figure 2.  Original images
Figure 3.  Boat image ($ 512\times 512 $). (a) Speckled image: $ L = 3 $. (b)-(f) Despeckled by various approaches. (g) Speckled image: $ L = 10 $. (h)-(l) Despeckled by various approaches
Figure 4.  Brick image ($ 256\times 256 $). (a) Speckled image: $ L = 3 $. (b)-(f) Despeckled by various approaches. (g) Speckled image: $ L = 10 $. (h)-(l) Despeckled by various approaches
Figure 5.  (a) Ratio image for the original image 2b, (b)-(f) Ratio images for the despeckled images 4h-4l. (g) Indicate the one-dimensional slices. (h) Results for the Slice-1. (i) Results for the Slice-2. (j) Results for the Slice-3
Figure 6.  Circle image ($ 299\times 299 $). (a) Speckled image: $ L = 3 $. (b)-(f) Despeckled by various approaches. (g) Speckled image: $ L = 10 $. (h)-(l) Despeckled by various approaches
Figure 7.  (a)-(f) 2D Contour map of the images 6g-6l. (g)-(l) 3D surface plot of the images 6g-6l
Figure 8.  Results are plotted for the circle image when the image is degraded by $ L = 10 $. (a) Relative error vs. the iteration number. (b) Logarithmic Relative error vs. the iteration number. (c) PSNR value vs. the corresponding iteration number
3]. (b)-(d) Restored by different models">Figure 9.  (a) SAR Image-1: One look radar image [3]. (b)-(d) Restored by different models
20]. (b)-(d) Restored by different models">Figure 10.  (a) SAR Image-2: Image of KOMPSAT/Arirang-5 of a part of the Himalayan Arc [20]. (b)-(d) Restored by different models
Figure 11.  A Ultrasound image of fetal foot and restored by different models
Figure 12.  A Ultrasound image of liver cyst and restored by different models
Figure 13.  Relative error vs. the iteration number for various models
Table 1.  MSSIM, PSNR, and SI
Image $ L $ AA [7] Dong[19] DDD[61] ZZDB[62] Proposed
MSSIM PSNR SI MSSIM PSNR SI MSSIM PSNR SI MSSIM PSNR SI MSSIM PSNR SI
Boat 1 0.5577 16.90 0.3695 0.5526 16.78 0.3368 0.5510 16.92 0.3417 0.5705 16.98 0.3289 0.5816 17.04 0.3162
3 0.6780 22.40 0.3759 0.6680 22.41 0.3712 0.6806 22.20 0.3720 0.6810 22.30 0.3569 0.6976 22.54 0.3472
5 0.7210 24.27 0.3783 0.7128 24.27 0.3755 0.7205 24.06 0.3662 0.7200 24.14 0.3637 0.7386 24.46 0.3558
10 0.7757 26.16 0.3796 0.7658 26.17 0.3782 0.7729 26.11 0.3794 0.7745 26.20 0.3709 0.7885 26.39 0.3658
Brick 1 0.2875 12.10 0.0816 0.2874 12.18 0.0805 0.2873 12.14 0.0779 0.2880 12.16 0.0728 0.2961 12.23 0.0719
3 0.3710 16.95 0.0933 0.3737 17.00 0.0901 0.3646 16.86 0.0879 0.3650 16.87 0.0865 0.3823 17.09 0.0854
5 0.4167 19.17 0.0998 0.4174 19.21 0.0978 0.4176 18.61 0.0955 0.4175 18.65 0.0923 0.4234 19.32 0.0908
10 0.4790 21.84 0.1063 0.4855 21.86 0.1051 0.4874 21.88 0.1043 0.4877 21.90 0.1005 0.4889 22.00 0.0996
Circle 1 0.9510 33.19 0.3106 0.9501 32.22 0.3165 0.9458 33.69 0.3219 0.9502 33.48 0.3098 0.9670 34.87 0.2982
3 0.9633 36.88 0.3270 0.9654 36.89 0.3245 0.9572 36.72 0.3271 0.9603 36.90 0.3215 0.9765 38.90 0.3163
5 0.9688 37.85 0.3285 0.9688 37.86 0.3271 0.9617 37.64 0.3289 0.9634 37.58 0.3249 0.9784 39.82 0.3198
10 0.9726 39.65 0.3291 0.9756 39.67 0.3279 0.9761 39.86 0.3290 0.9732 39.76 0.3253 0.9821 41.40 0.3241
Image $ L $ AA [7] Dong[19] DDD[61] ZZDB[62] Proposed
MSSIM PSNR SI MSSIM PSNR SI MSSIM PSNR SI MSSIM PSNR SI MSSIM PSNR SI
Boat 1 0.5577 16.90 0.3695 0.5526 16.78 0.3368 0.5510 16.92 0.3417 0.5705 16.98 0.3289 0.5816 17.04 0.3162
3 0.6780 22.40 0.3759 0.6680 22.41 0.3712 0.6806 22.20 0.3720 0.6810 22.30 0.3569 0.6976 22.54 0.3472
5 0.7210 24.27 0.3783 0.7128 24.27 0.3755 0.7205 24.06 0.3662 0.7200 24.14 0.3637 0.7386 24.46 0.3558
10 0.7757 26.16 0.3796 0.7658 26.17 0.3782 0.7729 26.11 0.3794 0.7745 26.20 0.3709 0.7885 26.39 0.3658
Brick 1 0.2875 12.10 0.0816 0.2874 12.18 0.0805 0.2873 12.14 0.0779 0.2880 12.16 0.0728 0.2961 12.23 0.0719
3 0.3710 16.95 0.0933 0.3737 17.00 0.0901 0.3646 16.86 0.0879 0.3650 16.87 0.0865 0.3823 17.09 0.0854
5 0.4167 19.17 0.0998 0.4174 19.21 0.0978 0.4176 18.61 0.0955 0.4175 18.65 0.0923 0.4234 19.32 0.0908
10 0.4790 21.84 0.1063 0.4855 21.86 0.1051 0.4874 21.88 0.1043 0.4877 21.90 0.1005 0.4889 22.00 0.0996
Circle 1 0.9510 33.19 0.3106 0.9501 32.22 0.3165 0.9458 33.69 0.3219 0.9502 33.48 0.3098 0.9670 34.87 0.2982
3 0.9633 36.88 0.3270 0.9654 36.89 0.3245 0.9572 36.72 0.3271 0.9603 36.90 0.3215 0.9765 38.90 0.3163
5 0.9688 37.85 0.3285 0.9688 37.86 0.3271 0.9617 37.64 0.3289 0.9634 37.58 0.3249 0.9784 39.82 0.3198
10 0.9726 39.65 0.3291 0.9756 39.67 0.3279 0.9761 39.86 0.3290 0.9732 39.76 0.3253 0.9821 41.40 0.3241
Table 2.  Comparison of SI and BRISQUE (BQ) values of despeckled images
Image AA [7] Dong[19] DDD[61] ZZDB[62] Proposed
SI BQ SI BQ SI BQ SI BQ SI BQ
SAR Image-1 0.5076 43.21 0.5034 43.99 0.5283 42.83 0.4806 42.56 0.4398 42.45
SAR Image-2 0.6985 45.26 0.6874 45.58 0.6845 43.96 0.6563 40.75 0.6270 38.38
Fetal foot 1.052 45.40 1.055 42.80 1.0642 40.17 1.0507 40.94 1.024 39.09
Liver cyst 0.8480 39.28 0.8484 41.15 0.8580 40.39 0.8252 45.95 0.8101 38.18
Image AA [7] Dong[19] DDD[61] ZZDB[62] Proposed
SI BQ SI BQ SI BQ SI BQ SI BQ
SAR Image-1 0.5076 43.21 0.5034 43.99 0.5283 42.83 0.4806 42.56 0.4398 42.45
SAR Image-2 0.6985 45.26 0.6874 45.58 0.6845 43.96 0.6563 40.75 0.6270 38.38
Fetal foot 1.052 45.40 1.055 42.80 1.0642 40.17 1.0507 40.94 1.024 39.09
Liver cyst 0.8480 39.28 0.8484 41.15 0.8580 40.39 0.8252 45.95 0.8101 38.18
[1]

Mujibur Rahman Chowdhury, Jun Zhang, Jing Qin, Yifei Lou. Poisson image denoising based on fractional-order total variation. Inverse Problems & Imaging, 2020, 14 (1) : 77-96. doi: 10.3934/ipi.2019064

[2]

Haijuan Hu, Jacques Froment, Baoyan Wang, Xiequan Fan. Spatial-Frequency domain nonlocal total variation for image denoising. Inverse Problems & Imaging, 2020, 14 (6) : 1157-1184. doi: 10.3934/ipi.2020059

[3]

Yunhai Xiao, Junfeng Yang, Xiaoming Yuan. Alternating algorithms for total variation image reconstruction from random projections. Inverse Problems & Imaging, 2012, 6 (3) : 547-563. doi: 10.3934/ipi.2012.6.547

[4]

Juan C. Moreno, V. B. Surya Prasath, João C. Neves. Color image processing by vectorial total variation with gradient channels coupling. Inverse Problems & Imaging, 2016, 10 (2) : 461-497. doi: 10.3934/ipi.2016008

[5]

Zhengmeng Jin, Chen Zhou, Michael K. Ng. A coupled total variation model with curvature driven for image colorization. Inverse Problems & Imaging, 2016, 10 (4) : 1037-1055. doi: 10.3934/ipi.2016031

[6]

Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692

[7]

Juan Carlos De los Reyes, Estefanía Loayza-Romero. Total generalized variation regularization in data assimilation for Burgers' equation. Inverse Problems & Imaging, 2019, 13 (4) : 755-786. doi: 10.3934/ipi.2019035

[8]

Baoli Shi, Zhi-Feng Pang, Jing Xu. Image segmentation based on the hybrid total variation model and the K-means clustering strategy. Inverse Problems & Imaging, 2016, 10 (3) : 807-828. doi: 10.3934/ipi.2016022

[9]

Xavier Bresson, Tony F. Chan. Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Problems & Imaging, 2008, 2 (4) : 455-484. doi: 10.3934/ipi.2008.2.455

[10]

Yu Zhang, Songsong Li, Zhichang Guo, Boying Wu. An adaptive total variational despeckling model based on gray level indicator frame. Inverse Problems & Imaging, 2021, 15 (6) : 1421-1450. doi: 10.3934/ipi.2020068

[11]

Ke Chen, Yiqiu Dong, Michael Hintermüller. A nonlinear multigrid solver with line Gauss-Seidel-semismooth-Newton smoother for the Fenchel pre-dual in total variation based image restoration. Inverse Problems & Imaging, 2011, 5 (2) : 323-339. doi: 10.3934/ipi.2011.5.323

[12]

Xiaoqun Zhang, Tony F. Chan. Wavelet inpainting by nonlocal total variation. Inverse Problems & Imaging, 2010, 4 (1) : 191-210. doi: 10.3934/ipi.2010.4.191

[13]

Jeffrey W. Lyons. An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem. Conference Publications, 2015, 2015 (special) : 775-782. doi: 10.3934/proc.2015.0775

[14]

Takeshi Ohtsuka, Ken Shirakawa, Noriaki Yamazaki. Optimal control problem for Allen-Cahn type equation associated with total variation energy. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 159-181. doi: 10.3934/dcdss.2012.5.159

[15]

Mustafa Inc, Mohammad Partohaghighi, Mehmet Ali Akinlar, Gerhard-Wilhelm Weber. New solutions of hyperbolic telegraph equation. Journal of Dynamics & Games, 2021, 8 (2) : 129-138. doi: 10.3934/jdg.2020029

[16]

Rinaldo M. Colombo, Francesca Monti. Solutions with large total variation to nonconservative hyperbolic systems. Communications on Pure & Applied Analysis, 2010, 9 (1) : 47-60. doi: 10.3934/cpaa.2010.9.47

[17]

Nicholas Long. Fixed point shifts of inert involutions. Discrete & Continuous Dynamical Systems, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297

[18]

Rafael Ortega. Stability and index of periodic solutions of a nonlinear telegraph equation. Communications on Pure & Applied Analysis, 2005, 4 (4) : 823-837. doi: 10.3934/cpaa.2005.4.823

[19]

Angel Angelov, Marcus Wagner. Multimodal image registration by elastic matching of edge sketches via optimal control. Journal of Industrial & Management Optimization, 2014, 10 (2) : 567-590. doi: 10.3934/jimo.2014.10.567

[20]

Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024

2020 Impact Factor: 1.639

Article outline

Figures and Tables

[Back to Top]