• Previous Article
    Variational source conditions for inverse Robin and flux problems by partial measurements
  • IPI Home
  • This Issue
  • Next Article
    Automated filtering in the nonlinear Fourier domain of systematic artifacts in 2D electrical impedance tomography
doi: 10.3934/ipi.2021058
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Counterexamples to inverse problems for the wave equation

1. 

Department of Mathematics and Statistics, University of Jyväskylä, Jyväskylä, Finland

2. 

Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland

Received  January 2021 Early access October 2021

We construct counterexamples to inverse problems for the wave operator on domains in $ \mathbb{R}^{n+1} $, $ n \ge 2 $, and on Lorentzian manifolds. We show that non-isometric Lorentzian metrics can lead to same partial data measurements, which are formulated in terms certain restrictions of the Dirichlet-to-Neumann map. The Lorentzian metrics giving counterexamples are time-dependent, but they are smooth and non-degenerate. On $ \mathbb{R}^{n+1} $ the metrics are conformal to the Minkowski metric.

Citation: Tony Liimatainen, Lauri Oksanen. Counterexamples to inverse problems for the wave equation. Inverse Problems & Imaging, doi: 10.3934/ipi.2021058
References:
[1]

S. Alexakis, A. Feizmohammadi and L. Oksanen, Lorentzian Calderón problem under curvature bounds, Preprint arXiv: 2008.07508, 2020. Google Scholar

[2]

A. L. Besse, Einstein Manifolds, Classics in Mathematics. Springer-Verlag, Berlin, 2008.  Google Scholar

[3]

S. N. Curry and A. R. Gover, An introduction to conformal geometry and tractor calculus, with a view to applications in general relativity, volume 443 of London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, Cambridge, 2018, 86-170.  Google Scholar

[4]

T. Daudé, N. Kamran and F. Nicoleau, A survey of non-uniqueness results for the anisotropic Calder´on problem with disjoint data, In Nonlinear Analysis in Geometry and Applied Mathematics. Part 2, volume 2 of Harv. Univ. Cent. Math. Sci. Appl. Ser. Math., Int. Press, Somerville, MA, 2018, 77-101.  Google Scholar

[5]

T. DaudéN. Kamran and F. Nicoleau, Non-uniqueness results for the anisotropic Calderón problem with data measured on disjoint sets, Ann. Inst. Fourier (Grenoble), 69 (2019), 119-170.  doi: 10.5802/aif.3240.  Google Scholar

[6]

T. DaudéN. Kamran and F. Nicoleau, On the hidden mechanism behind non-uniqueness for the anisotropic Calderón problem with data on disjoint sets, Ann. Henri Poincaré, 20 (2019), 859-887.  doi: 10.1007/s00023-018-00755-2.  Google Scholar

[7]

T. DaudéN. Kamran and F. Nicoleau, The anisotropic Calderón problem for singular metrics of warped product type: The borderline between uniqueness and invisibility, J. Spectr. Theory, 10 (2020), 703-746.  doi: 10.4171/JST/310.  Google Scholar

[8]

T. Daudé, N. Kamran and F. Nicoleau, On nonuniqueness for the anisotropic Calderón problem with partial data, Forum Math. Sigma, 8 (2020), Paper No. e7, 17 pp. doi: 10.1017/fms.2020.1.  Google Scholar

[9]

G. Eskin, Inverse hyperbolic problems with time-dependent coefficients, Comm. Partial Differential Equations, 32 (2007), 1737–1758. doi: 10.1080/03605300701382340.  Google Scholar

[10]

A. GreenleafM. Lassas and G. Uhlmann, On nonuniqueness for Calderón's inverse problem, Math. Res. Lett., 10 (2003), 685-693.  doi: 10.4310/MRL.2003.v10.n5.a11.  Google Scholar

[11]

L. Hörmander, The Analysis of Linear Partial Differential Operators. III, Classics in Mathematics. Springer, Berlin, 2007. doi: 10.1007/978-3-540-49938-1.  Google Scholar

[12]

A. Katchalov, Y. Kurylev and M. Lassas, Inverse Boundary Spectral Problems, volume 123 of Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2001. doi: 10.1201/9781420036220.  Google Scholar

[13]

C. Kenig and M. Salo, The Calderón problem with partial data on manifolds and applications, Analysis and PDE, 6 (2013), 2003-2048.  doi: 10.2140/apde.2013.6.2003.  Google Scholar

[14]

Y. Kian and L. Oksanen, Recovery of time-dependent coefficient on {R}iemannian manifold for hyperbolic equations, Int. Math. Res. Not. IMRN, (2019), 5087–5126. doi: 10.1093/imrn/rnx263.  Google Scholar

[15]

Y. KianY. KurylevM. Lassas and L. Oksanen, Unique recovery of lower order coefficients for hyperbolic equations from data on disjoint sets, J. Differential Equations, 267 (2019), 2210-2238.  doi: 10.1016/j.jde.2019.03.008.  Google Scholar

[16]

M. Lassas and T. Liimatainen, Conformal harmonic coordinates, To appear in Communications in Analysis and Geometry, Preprint arXiv: 1912.08030, 2019. Google Scholar

[17]

M. Lassas, T. Liimatainen and M. Salo, The Calderón problem for the conformal Laplacian, To appear in Communications in Analysis and Geometry, Preprint arXiv: 1612.07939, 2016. Google Scholar

[18]

M. Lassas and L. Oksanen, An inverse problem for a wave equation with sources and observations on disjoint sets, Inverse Problems, 26 (2010), 085012, 19 pp. doi: 10.1088/0266-5611/26/8/085012.  Google Scholar

[19]

M. Lassas and L. Oksanen, Inverse problem for the Riemannian wave equation with Dirichlet data and {N}eumann data on disjoint sets, Duke Mathematical Journal, 163 (2014), 1071-1103.  doi: 10.1215/00127094-2649534.  Google Scholar

[20]

M. LassasM. Taylor and G. Uhlmann, The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary, Comm. Geom. Anal., 11 (2003), 207-222.  doi: 10.4310/CAG.2003.v11.n2.a2.  Google Scholar

[21]

J. M. Lee and T. H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.), 17 (1987), 37-91.  doi: 10.1090/S0273-0979-1987-15514-5.  Google Scholar

[22]

W. R. B. Lionheart, Conformal uniqueness results in anisotropic electrical impedance imaging, Inverse Problems, 13 (1997), 125-134.  doi: 10.1088/0266-5611/13/1/010.  Google Scholar

[23]

J. B. PendryD. Schurig and D. R. Smith, Controlling electromagnetic fields, Science, 312 (2006), 1780-1782.  doi: 10.1126/science.1125907.  Google Scholar

[24]

Rakesh, Characterization of transmission data for Webster's horn equation, Inverse Problems, 16 (2000), L9–L24. doi: 10.1088/0266-5611/16/2/102.  Google Scholar

[25]

D. SchurigJ. J. MockB. J. JusticeS. A. CummerJ. B. PendryA. F. Starr and D. R. Smith, Metamaterial electromagnetic cloak at microwave frequencies, Science, 314 (2006), 977-980.  doi: 10.1126/science.1133628.  Google Scholar

[26]

G. Uhlmann, Inverse problems: Seeing the unseen, Bull. Math. Sci., 4 (2014), 209-279.  doi: 10.1007/s13373-014-0051-9.  Google Scholar

show all references

References:
[1]

S. Alexakis, A. Feizmohammadi and L. Oksanen, Lorentzian Calderón problem under curvature bounds, Preprint arXiv: 2008.07508, 2020. Google Scholar

[2]

A. L. Besse, Einstein Manifolds, Classics in Mathematics. Springer-Verlag, Berlin, 2008.  Google Scholar

[3]

S. N. Curry and A. R. Gover, An introduction to conformal geometry and tractor calculus, with a view to applications in general relativity, volume 443 of London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, Cambridge, 2018, 86-170.  Google Scholar

[4]

T. Daudé, N. Kamran and F. Nicoleau, A survey of non-uniqueness results for the anisotropic Calder´on problem with disjoint data, In Nonlinear Analysis in Geometry and Applied Mathematics. Part 2, volume 2 of Harv. Univ. Cent. Math. Sci. Appl. Ser. Math., Int. Press, Somerville, MA, 2018, 77-101.  Google Scholar

[5]

T. DaudéN. Kamran and F. Nicoleau, Non-uniqueness results for the anisotropic Calderón problem with data measured on disjoint sets, Ann. Inst. Fourier (Grenoble), 69 (2019), 119-170.  doi: 10.5802/aif.3240.  Google Scholar

[6]

T. DaudéN. Kamran and F. Nicoleau, On the hidden mechanism behind non-uniqueness for the anisotropic Calderón problem with data on disjoint sets, Ann. Henri Poincaré, 20 (2019), 859-887.  doi: 10.1007/s00023-018-00755-2.  Google Scholar

[7]

T. DaudéN. Kamran and F. Nicoleau, The anisotropic Calderón problem for singular metrics of warped product type: The borderline between uniqueness and invisibility, J. Spectr. Theory, 10 (2020), 703-746.  doi: 10.4171/JST/310.  Google Scholar

[8]

T. Daudé, N. Kamran and F. Nicoleau, On nonuniqueness for the anisotropic Calderón problem with partial data, Forum Math. Sigma, 8 (2020), Paper No. e7, 17 pp. doi: 10.1017/fms.2020.1.  Google Scholar

[9]

G. Eskin, Inverse hyperbolic problems with time-dependent coefficients, Comm. Partial Differential Equations, 32 (2007), 1737–1758. doi: 10.1080/03605300701382340.  Google Scholar

[10]

A. GreenleafM. Lassas and G. Uhlmann, On nonuniqueness for Calderón's inverse problem, Math. Res. Lett., 10 (2003), 685-693.  doi: 10.4310/MRL.2003.v10.n5.a11.  Google Scholar

[11]

L. Hörmander, The Analysis of Linear Partial Differential Operators. III, Classics in Mathematics. Springer, Berlin, 2007. doi: 10.1007/978-3-540-49938-1.  Google Scholar

[12]

A. Katchalov, Y. Kurylev and M. Lassas, Inverse Boundary Spectral Problems, volume 123 of Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2001. doi: 10.1201/9781420036220.  Google Scholar

[13]

C. Kenig and M. Salo, The Calderón problem with partial data on manifolds and applications, Analysis and PDE, 6 (2013), 2003-2048.  doi: 10.2140/apde.2013.6.2003.  Google Scholar

[14]

Y. Kian and L. Oksanen, Recovery of time-dependent coefficient on {R}iemannian manifold for hyperbolic equations, Int. Math. Res. Not. IMRN, (2019), 5087–5126. doi: 10.1093/imrn/rnx263.  Google Scholar

[15]

Y. KianY. KurylevM. Lassas and L. Oksanen, Unique recovery of lower order coefficients for hyperbolic equations from data on disjoint sets, J. Differential Equations, 267 (2019), 2210-2238.  doi: 10.1016/j.jde.2019.03.008.  Google Scholar

[16]

M. Lassas and T. Liimatainen, Conformal harmonic coordinates, To appear in Communications in Analysis and Geometry, Preprint arXiv: 1912.08030, 2019. Google Scholar

[17]

M. Lassas, T. Liimatainen and M. Salo, The Calderón problem for the conformal Laplacian, To appear in Communications in Analysis and Geometry, Preprint arXiv: 1612.07939, 2016. Google Scholar

[18]

M. Lassas and L. Oksanen, An inverse problem for a wave equation with sources and observations on disjoint sets, Inverse Problems, 26 (2010), 085012, 19 pp. doi: 10.1088/0266-5611/26/8/085012.  Google Scholar

[19]

M. Lassas and L. Oksanen, Inverse problem for the Riemannian wave equation with Dirichlet data and {N}eumann data on disjoint sets, Duke Mathematical Journal, 163 (2014), 1071-1103.  doi: 10.1215/00127094-2649534.  Google Scholar

[20]

M. LassasM. Taylor and G. Uhlmann, The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary, Comm. Geom. Anal., 11 (2003), 207-222.  doi: 10.4310/CAG.2003.v11.n2.a2.  Google Scholar

[21]

J. M. Lee and T. H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.), 17 (1987), 37-91.  doi: 10.1090/S0273-0979-1987-15514-5.  Google Scholar

[22]

W. R. B. Lionheart, Conformal uniqueness results in anisotropic electrical impedance imaging, Inverse Problems, 13 (1997), 125-134.  doi: 10.1088/0266-5611/13/1/010.  Google Scholar

[23]

J. B. PendryD. Schurig and D. R. Smith, Controlling electromagnetic fields, Science, 312 (2006), 1780-1782.  doi: 10.1126/science.1125907.  Google Scholar

[24]

Rakesh, Characterization of transmission data for Webster's horn equation, Inverse Problems, 16 (2000), L9–L24. doi: 10.1088/0266-5611/16/2/102.  Google Scholar

[25]

D. SchurigJ. J. MockB. J. JusticeS. A. CummerJ. B. PendryA. F. Starr and D. R. Smith, Metamaterial electromagnetic cloak at microwave frequencies, Science, 314 (2006), 977-980.  doi: 10.1126/science.1133628.  Google Scholar

[26]

G. Uhlmann, Inverse problems: Seeing the unseen, Bull. Math. Sci., 4 (2014), 209-279.  doi: 10.1007/s13373-014-0051-9.  Google Scholar

[1]

Xiaosheng Li, Gunther Uhlmann. Inverse problems with partial data in a slab. Inverse Problems & Imaging, 2010, 4 (3) : 449-462. doi: 10.3934/ipi.2010.4.449

[2]

Fatemeh Ahangari. Conformal deformations of a specific class of lorentzian manifolds with non-irreducible holonomy representation. Numerical Algebra, Control & Optimization, 2019, 9 (4) : 401-412. doi: 10.3934/naco.2019039

[3]

Fioralba Cakoni, Rainer Kress. Integral equations for inverse problems in corrosion detection from partial Cauchy data. Inverse Problems & Imaging, 2007, 1 (2) : 229-245. doi: 10.3934/ipi.2007.1.229

[4]

Sebastian Acosta. A control approach to recover the wave speed (conformal factor) from one measurement. Inverse Problems & Imaging, 2015, 9 (2) : 301-315. doi: 10.3934/ipi.2015.9.301

[5]

Suman Kumar Sahoo, Manmohan Vashisth. A partial data inverse problem for the convection-diffusion equation. Inverse Problems & Imaging, 2020, 14 (1) : 53-75. doi: 10.3934/ipi.2019063

[6]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

[7]

Anna Doubova, Enrique Fernández-Cara. Some geometric inverse problems for the linear wave equation. Inverse Problems & Imaging, 2015, 9 (2) : 371-393. doi: 10.3934/ipi.2015.9.371

[8]

Frank Natterer. Incomplete data problems in wave equation imaging. Inverse Problems & Imaging, 2010, 4 (4) : 685-691. doi: 10.3934/ipi.2010.4.685

[9]

Lok Ming Lui, Chengfeng Wen, Xianfeng Gu. A conformal approach for surface inpainting. Inverse Problems & Imaging, 2013, 7 (3) : 863-884. doi: 10.3934/ipi.2013.7.863

[10]

Toshiyuki Suzuki. Semilinear Schrödinger evolution equations with inverse-square and harmonic potentials via pseudo-conformal symmetry. Communications on Pure & Applied Analysis, 2021, 20 (12) : 4347-4377. doi: 10.3934/cpaa.2021163

[11]

Zuxing Xuan. On conformal measures of parabolic meromorphic functions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 249-257. doi: 10.3934/dcdsb.2015.20.249

[12]

Peter Haïssinsky, Kevin M. Pilgrim. Examples of coarse expanding conformal maps. Discrete & Continuous Dynamical Systems, 2012, 32 (7) : 2403-2416. doi: 10.3934/dcds.2012.32.2403

[13]

Nicholas Hoell, Guillaume Bal. Ray transforms on a conformal class of curves. Inverse Problems & Imaging, 2014, 8 (1) : 103-125. doi: 10.3934/ipi.2014.8.103

[14]

Tomasz Szarek, Mariusz Urbański, Anna Zdunik. Continuity of Hausdorff measure for conformal dynamical systems. Discrete & Continuous Dynamical Systems, 2013, 33 (10) : 4647-4692. doi: 10.3934/dcds.2013.33.4647

[15]

Hans Henrik Rugh. On dimensions of conformal repellers. Randomness and parameter dependency. Discrete & Continuous Dynamical Systems, 2012, 32 (7) : 2553-2564. doi: 10.3934/dcds.2012.32.2553

[16]

Mario Roy, Mariusz Urbański. Multifractal analysis for conformal graph directed Markov systems. Discrete & Continuous Dynamical Systems, 2009, 25 (2) : 627-650. doi: 10.3934/dcds.2009.25.627

[17]

Marcelo M. Disconzi. On the existence of solutions and causality for relativistic viscous conformal fluids. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1567-1599. doi: 10.3934/cpaa.2019075

[18]

Domenico Mucci. Maps into projective spaces: Liquid crystal and conformal energies. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 597-635. doi: 10.3934/dcdsb.2012.17.597

[19]

Rossen I. Ivanov. Conformal and Geometric Properties of the Camassa-Holm Hierarchy. Discrete & Continuous Dynamical Systems, 2007, 19 (3) : 545-554. doi: 10.3934/dcds.2007.19.545

[20]

Juan Wang, Yongluo Cao, Yun Zhao. Dimension estimates in non-conformal setting. Discrete & Continuous Dynamical Systems, 2014, 34 (9) : 3847-3873. doi: 10.3934/dcds.2014.34.3847

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (71)
  • HTML views (79)
  • Cited by (0)

Other articles
by authors

[Back to Top]