
-
Previous Article
Generative imaging and image processing via generative encoder
- IPI Home
- This Issue
- Next Article
Joint reconstruction and low-rank decomposition for dynamic inverse problems
1. | Department of Computer Science, University College London, London WC1E 6BT, United Kingdom |
2. | Center for Industrial Mathematics, University of Bremen, 28359 Bremen, Germany |
3. | Department of Mathematical Sciences, University of Oulu, 90014 Oulu, Finland |
A primary interest in dynamic inverse problems is to identify the underlying temporal behaviour of the system from outside measurements. In this work, we consider the case, where the target can be represented by a decomposition of spatial and temporal basis functions and hence can be efficiently represented by a low-rank decomposition. We then propose a joint reconstruction and low-rank decomposition method based on the Nonnegative Matrix Factorisation to obtain the unknown from highly undersampled dynamic measurement data. The proposed framework allows for flexible incorporation of separate regularisers for spatial and temporal features. For the special case of a stationary operator, we can effectively use the decomposition to reduce the computational complexity and obtain a substantial speed-up. The proposed methods are evaluated for three simulated phantoms and we compare the obtained results to a separate low-rank reconstruction and subsequent decomposition approach based on the widely used principal component analysis.
References:
[1] |
S. Arridge, P. Fernsel and A. Hauptmann, Joint reconstruction and low-rank decomposition for dynamic, Available online on GitLab: Inverse Problems - Support Code and Reconstruction Videos, 2021. https://gitlab.informatik.uni-bremen.de/s_p32gf3/joint_reconstruction_lowrank_decomp_dynamicip. |
[2] |
D. Böhning and B. G. Lindsay,
Monotonicity of quadratic-approximation algorithms, Ann. Inst. Statist. Math., 40 (1988), 641-663.
doi: 10.1007/BF00049423. |
[3] |
C. Boutsidis and E. Gallopoulos,
SVD based initialization: A head start for nonnegative matrix factorization, Pattern Recognition, 41 (2008), 1350-1362.
doi: 10.1016/j.patcog.2007.09.010. |
[4] |
D. Brunet, E. R. Vrscay and Z. Wang,
On the mathematical properties of the structural similarity index, IEEE Trans. Image Process., 21 (2012), 1488-1499.
doi: 10.1109/TIP.2011.2173206. |
[5] |
T. A. Bubba, M. März, Z. Purisha, M. Lassas and S. Siltanen, Shearlet-based regularization in sparse dynamic tomography, In Wavelets and Sparsity XVII, International Society for Optics and Photonics, 10394 (2017), 236–245.
doi: 10.1117/12.2273380. |
[6] |
M. Burger, H. Dirks, L. Frerking, A. Hauptmann, T. Helin and S. Siltanen, A variational reconstruction method for undersampled dynamic X-ray tomography based on physical motion models, Inverse Problems, 33 (2017), 24pp.
doi: 10.1088/1361-6420/aa99cf. |
[7] |
M. Burger, H. Dirks and C.-B. Schönlieb,
A variational model for joint motion estimation and image reconstruction, SIAM J. Imaging Sci., 11 (2018), 94-128.
doi: 10.1137/16M1084183. |
[8] |
J. Cai, X. Jia, H. Gao, S. B. Jiang, Z. Shen and H. Zhao,
Cine cone beam ct reconstruction using low-rank matrix factorization: Algorithm and a proof-of-principle study, IEEE Transactions on Medical Imaging, 33 (2014), 1581-1591.
doi: 10.1109/TMI.2014.2319055. |
[9] |
E. J. Candès, X. Li, Y. Ma and J. Wright,
Robust principal component analysis?, J. ACM, 58 (2011), 1-37.
doi: 10.1145/1970392.1970395. |
[10] |
B. Chen, J. Abascal and M. Soleimani,
Extended joint sparsity reconstruction for spatial and temporal ERT imaging, Sensors, 18 (2018), 4014.
doi: 10.3390/s18114014. |
[11] |
C. Chen and O. Öktem,
Indirect image registration with large diffeomorphic deformations, SIAM J. Imaging Sci., 11 (2018), 575-617.
doi: 10.1137/17M1134627. |
[12] |
A. Cichocki, R. Zdunek, A. H. Phan and S. Amari, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi–Way Data Analysis and Blind Source Separation, Wiley Publishing, 2009. |
[13] |
C. De Mol, Blind Deconvolution and Nonnegative Matrix Factorization, Oberwolfach Reports 51/2012, Mathematisches Forschungsinstitut Oberwolfach, 2012. |
[14] |
M. Defrise, C. Vanhove and X. Liu, An algorithm for total variation regularization in high-dimensional linear problems, Inverse Problems, 27 (2011), 16pp.
doi: 10.1088/0266-5611/27/6/065002. |
[15] |
C. Ding, X. He and H. D. Simon, On the equivalence of nonnegative matrix factorization and spectral clustering, In Proceedings of the 2005 SIAM International Conference on Data Mining, 5 2005,606–610.
doi: 10.1137/1.9781611972757.70. |
[16] |
N. Djurabekova, A. Goldberg, A. Hauptmann, D. Hawkes, G. Long, F. Lucka and M. Betcke,
Application of proximal alternating linearized minimization (PALM) and inertial PALM to dynamic 3D CT, 15th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, 11072 (2019), 30-34.
doi: 10.1117/12.2534827. |
[17] |
D. Driggs, J. Tang, J. Liang, M. Davies and C.-B. Schönlieb, Spring: A fast stochastic proximal alternating method for non-smooth non-convex optimization, preprint, arXiv: 2002.12266. |
[18] |
L. Feng, R. Grimm, K. T. Block, H. Chandarana, S. Kim, J. Xu, L. Axel, D. K. Sodickson and R. Otazo,
Golden-angle radial sparse parallel MRI: Combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI, Magnetic Resonance in Medicine, 72 (2014), 707-717.
doi: 10.1002/mrm.24980. |
[19] |
P. Fernsel and P. Maass,
A survey on surrogate approaches to non-negative matrix factorization, Vietnam J. Math., 46 (2018), 987-1021.
doi: 10.1007/s10013-018-0315-x. |
[20] |
C. Févotte, N. Bertin and J.-L. Durrieu,
Nonnegative matrix factorization with the itakura-saito-divergence: With application to music analysis, Neural Computation, 21 (2009), 793-830.
|
[21] |
H. Gao, J. Cai, Z. Shen and H. Zhao,
Robust principal component analysis-based four-dimensional computed tomography, Phys. Med. Biol., 56 (2011), 3181-3198.
doi: 10.1088/0031-9155/56/11/002. |
[22] |
H. Gao, Y. Zhang, L. Ren and F.-F. Yin,
Principal component reconstruction (PCR) for cine CBCT with motion learning from 2d fluoroscopy, Medical Physics, 45 (2018), 167-177.
doi: 10.1002/mp.12671. |
[23] |
T. Goldstein and S. Osher,
The split Bregman method for l1-regularized problems, SIAM J. Imaging Sci., 2 (2009), 323-343.
doi: 10.1137/080725891. |
[24] |
G. H. Golub and C. F. Van Loan, Matrix Computations, 4$^nd$ edition, Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, 2013.
![]() ![]() |
[25] |
B. Gris, C. Chen and O. Öktem, Image reconstruction through metamorphosis, Inverse Problems, 36 (2020), 27pp.
doi: 10.1088/1361-6420/ab5832. |
[26] |
J. Hakkarainen, Z. Purisha, A. Solonen and S. Siltanen,
Undersampled dynamic X-ray tomography with dimension reduction Kalman filter, IEEE Transactions on Computational Imaging, 5 (2019), 492-501.
doi: 10.1109/TCI.2019.2896527. |
[27] |
A. Hauptmann, O. Öktem and C. Schönlieb, Image reconstruction in dynamic inverse problems with temporal models, preprint, arXiv: 2007.10238. |
[28] |
K. S. Kim and J. C. Ye, Low-dose limited view 4d ct reconstruction using patch-based low-rank regularization, In 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC), (2013), 1–4.
doi: 10.1109/NSSMIC.2013.6829178. |
[29] |
B. Klingenberg, J. Curry and A. Dougherty,
Non-negative matrix factorization: Ill-posedness and a geometric algorithm, Pattern Recognition, 42 (2009), 918-928.
doi: 10.1016/j.patcog.2008.08.026. |
[30] |
D. Kressner and A. Uschmajew,
On low-rank approximability of solutions to high-dimensional operator equations and eigenvalue problems, Linear Algebra Appl., 493 (2016), 556-572.
doi: 10.1016/j.laa.2015.12.016. |
[31] |
K. Lange, Optimization, Springer Texts in Statistics, Springer-Verlag, New York, 2004.
doi: 10.1007/978-1-4757-4182-7. |
[32] |
K. Lange, D. R. Hunter and I. Yang,
Optimization transfer using surrogate objective functions, J. Comput. Graph. Statist., 9 (2000), 1-59.
doi: 10.2307/1390605. |
[33] |
L. Lecharlier and C. De Mol,
Regularized blind deconvolution with poisson data, Journal of Physics: Conference Series, 464 (2013), 012003.
doi: 10.1088/1742-6596/464/1/012003. |
[34] |
D. D. Lee and H. S. Seung,
Learning the parts of objects by non-negative matrix factorization, Nature, 401 (1999), 788-791.
doi: 10.1038/44565. |
[35] |
D. D. Lee and H. S. Seung, Algorithms for non-negative matrix factorization, In Advances in Neural Information Processing Systems 13 - NIPS 2000, (2001), 535–541. |
[36] |
J. Leuschner, M. Schmidt, P. Fernsel, D. Lachmund, T. Boskamp and P. Maass,
Supervised non-negative matrix factorization methods for maldi imaging applications, Bioinformatics, 35 (2019), 1940-1947.
doi: 10.1093/bioinformatics/bty909. |
[37] |
S. G. Lingala, Y. Hu, E. V. R. DiBella and M. Jacob,
Accelerated dynamic MRI exploiting sparsity and low-rank structure: K-t SLR, IEEE Transactions on Medical Imaging, 30 (2011), 1042-1054.
doi: 10.1109/TMI.2010.2100850. |
[38] |
F. Lucka, N. Huynh, M. Betcke, E. Zhang, P. Beard, B. Cox and S. Arridge,
Enhancing compressed sensing 4D photoacoustic tomography by simultaneous motion estimation, SIAM J. Imaging Sci., 11 (2018), 2224-2253.
doi: 10.1137/18M1170066. |
[39] |
M. Lustig, J. M. Santos, D. L. Donoho and J. M. Pauly, kt SPARSE: High frame rate dynamic MRI exploiting spatio-temporal sparsity, In Proceedings of the 13th annual meeting of ISMRM, Seattle, 2420 (2006). |
[40] |
E. Niemi, M. Lassas, A. Kallonen, L. Harhanen, K. Hämäläinen and S. Siltanen,
Dynamic multi-source X-ray tomography using a spacetime level set method, J. Comput. Phys., 291 (2015), 218-237.
doi: 10.1016/j.jcp.2015.03.016. |
[41] |
J. P. Oliveira, J. M. Bioucas-Dias and M. A. T. Figueiredo,
Review: Adaptive total variation image deblurring: A majorization-minimization approach, Signal Processing, 89 (2009), 1683-1693.
doi: 10.1016/j.sigpro.2009.03.018. |
[42] |
P. Paatero and U. Tapper,
Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values, Environmetrics, 5 (1994), 111-126.
doi: 10.1002/env.3170050203. |
[43] |
K. Pearson,
On lines and planes of closest fit to systems of points in space, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2 (1901), 559-572.
doi: 10.1080/14786440109462720. |
[44] |
U. Schmitt and A. K. Louis,
Efficient algorithms for the regularization of dynamic inverse problems: Ⅰ. Theory, Inverse Problems, 18 (2002), 645-658.
doi: 10.1088/0266-5611/18/3/308. |
[45] |
U. Schmitt, A. K. Louis, C. Wolters and M. Vauhkonen,
Efficient algorithms for the regularization of dynamic inverse problems: Ⅱ. Applications, Inverse Problems, 18 (2002), 659-676.
doi: 10.1088/0266-5611/18/3/309. |
[46] |
J. A. Steeden, G. T. Kowalik, O. Tann, M. Hughes, K. H. Mortensen and V. Muthurangu,
Real-time assessment of right and left ventricular volumes and function in children using high spatiotemporal resolution spiral bSSFP with compressed sensing, Journal of Cardiovascular Magnetic Resonance, 20 (2018), 79.
doi: 10.1186/s12968-018-0500-9. |
[47] |
M. Tao and X. Yuan,
Recovering low-rank and sparse components of matrices from incomplete and noisy observations, SIAM J. Optim., 21 (2011), 57-81.
doi: 10.1137/100781894. |
[48] |
B. R. Trémoulhéac, Low-rank and Sparse Reconstruction in Dynamic Magnetic Resonance Imaging Via Proximal Splitting Methods, PhD thesis, University College London, 2014. |
[49] |
B. R. Trémoulhéac, N. Dikaios, D. Atkinson and S. Arridge,
Dynamic MR image reconstruction-separation from undersampled (k, t)-space via low-rank plus sparse prior, IEEE Transactions on Medical Imaging, 33 (2014), 1689-1701.
doi: 10.1109/TMI.2014.2321190. |
[50] |
A. Uschmajew, On Low-Rank Approximation in Tensor Product Hilbert Spaces, PhD thesis, Technische Universität Berlin, 2013. |
[51] |
S. Wundrak, J. Paul, J. Ulrici, E. Hell and V. Rasche,
A small surrogate for the golden angle in time-resolved radial MRI based on generalized Fibonacci sequences, IEEE Transactions on Medical Imaging, 34 (2014), 1262-1269.
doi: 10.1109/TMI.2014.2382572. |
[52] |
X. Yu, S. Chen, Z. Hu, M. Liu, Y. Chen, P. Shi and H. Liu,
Sparse/low rank constrained reconstruction for dynamic pet imaging, PLOS ONE, 10 (2015), 1-18.
doi: 10.1371/journal.pone.0142019. |
[53] |
X. M. Yuan and J. F. Yang,
Sparse and low-rank matrix decomposition via alternating direction methods, Pac. J. Optim., 9 (2013), 167-180.
|
show all references
References:
[1] |
S. Arridge, P. Fernsel and A. Hauptmann, Joint reconstruction and low-rank decomposition for dynamic, Available online on GitLab: Inverse Problems - Support Code and Reconstruction Videos, 2021. https://gitlab.informatik.uni-bremen.de/s_p32gf3/joint_reconstruction_lowrank_decomp_dynamicip. |
[2] |
D. Böhning and B. G. Lindsay,
Monotonicity of quadratic-approximation algorithms, Ann. Inst. Statist. Math., 40 (1988), 641-663.
doi: 10.1007/BF00049423. |
[3] |
C. Boutsidis and E. Gallopoulos,
SVD based initialization: A head start for nonnegative matrix factorization, Pattern Recognition, 41 (2008), 1350-1362.
doi: 10.1016/j.patcog.2007.09.010. |
[4] |
D. Brunet, E. R. Vrscay and Z. Wang,
On the mathematical properties of the structural similarity index, IEEE Trans. Image Process., 21 (2012), 1488-1499.
doi: 10.1109/TIP.2011.2173206. |
[5] |
T. A. Bubba, M. März, Z. Purisha, M. Lassas and S. Siltanen, Shearlet-based regularization in sparse dynamic tomography, In Wavelets and Sparsity XVII, International Society for Optics and Photonics, 10394 (2017), 236–245.
doi: 10.1117/12.2273380. |
[6] |
M. Burger, H. Dirks, L. Frerking, A. Hauptmann, T. Helin and S. Siltanen, A variational reconstruction method for undersampled dynamic X-ray tomography based on physical motion models, Inverse Problems, 33 (2017), 24pp.
doi: 10.1088/1361-6420/aa99cf. |
[7] |
M. Burger, H. Dirks and C.-B. Schönlieb,
A variational model for joint motion estimation and image reconstruction, SIAM J. Imaging Sci., 11 (2018), 94-128.
doi: 10.1137/16M1084183. |
[8] |
J. Cai, X. Jia, H. Gao, S. B. Jiang, Z. Shen and H. Zhao,
Cine cone beam ct reconstruction using low-rank matrix factorization: Algorithm and a proof-of-principle study, IEEE Transactions on Medical Imaging, 33 (2014), 1581-1591.
doi: 10.1109/TMI.2014.2319055. |
[9] |
E. J. Candès, X. Li, Y. Ma and J. Wright,
Robust principal component analysis?, J. ACM, 58 (2011), 1-37.
doi: 10.1145/1970392.1970395. |
[10] |
B. Chen, J. Abascal and M. Soleimani,
Extended joint sparsity reconstruction for spatial and temporal ERT imaging, Sensors, 18 (2018), 4014.
doi: 10.3390/s18114014. |
[11] |
C. Chen and O. Öktem,
Indirect image registration with large diffeomorphic deformations, SIAM J. Imaging Sci., 11 (2018), 575-617.
doi: 10.1137/17M1134627. |
[12] |
A. Cichocki, R. Zdunek, A. H. Phan and S. Amari, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi–Way Data Analysis and Blind Source Separation, Wiley Publishing, 2009. |
[13] |
C. De Mol, Blind Deconvolution and Nonnegative Matrix Factorization, Oberwolfach Reports 51/2012, Mathematisches Forschungsinstitut Oberwolfach, 2012. |
[14] |
M. Defrise, C. Vanhove and X. Liu, An algorithm for total variation regularization in high-dimensional linear problems, Inverse Problems, 27 (2011), 16pp.
doi: 10.1088/0266-5611/27/6/065002. |
[15] |
C. Ding, X. He and H. D. Simon, On the equivalence of nonnegative matrix factorization and spectral clustering, In Proceedings of the 2005 SIAM International Conference on Data Mining, 5 2005,606–610.
doi: 10.1137/1.9781611972757.70. |
[16] |
N. Djurabekova, A. Goldberg, A. Hauptmann, D. Hawkes, G. Long, F. Lucka and M. Betcke,
Application of proximal alternating linearized minimization (PALM) and inertial PALM to dynamic 3D CT, 15th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, 11072 (2019), 30-34.
doi: 10.1117/12.2534827. |
[17] |
D. Driggs, J. Tang, J. Liang, M. Davies and C.-B. Schönlieb, Spring: A fast stochastic proximal alternating method for non-smooth non-convex optimization, preprint, arXiv: 2002.12266. |
[18] |
L. Feng, R. Grimm, K. T. Block, H. Chandarana, S. Kim, J. Xu, L. Axel, D. K. Sodickson and R. Otazo,
Golden-angle radial sparse parallel MRI: Combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI, Magnetic Resonance in Medicine, 72 (2014), 707-717.
doi: 10.1002/mrm.24980. |
[19] |
P. Fernsel and P. Maass,
A survey on surrogate approaches to non-negative matrix factorization, Vietnam J. Math., 46 (2018), 987-1021.
doi: 10.1007/s10013-018-0315-x. |
[20] |
C. Févotte, N. Bertin and J.-L. Durrieu,
Nonnegative matrix factorization with the itakura-saito-divergence: With application to music analysis, Neural Computation, 21 (2009), 793-830.
|
[21] |
H. Gao, J. Cai, Z. Shen and H. Zhao,
Robust principal component analysis-based four-dimensional computed tomography, Phys. Med. Biol., 56 (2011), 3181-3198.
doi: 10.1088/0031-9155/56/11/002. |
[22] |
H. Gao, Y. Zhang, L. Ren and F.-F. Yin,
Principal component reconstruction (PCR) for cine CBCT with motion learning from 2d fluoroscopy, Medical Physics, 45 (2018), 167-177.
doi: 10.1002/mp.12671. |
[23] |
T. Goldstein and S. Osher,
The split Bregman method for l1-regularized problems, SIAM J. Imaging Sci., 2 (2009), 323-343.
doi: 10.1137/080725891. |
[24] |
G. H. Golub and C. F. Van Loan, Matrix Computations, 4$^nd$ edition, Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, 2013.
![]() ![]() |
[25] |
B. Gris, C. Chen and O. Öktem, Image reconstruction through metamorphosis, Inverse Problems, 36 (2020), 27pp.
doi: 10.1088/1361-6420/ab5832. |
[26] |
J. Hakkarainen, Z. Purisha, A. Solonen and S. Siltanen,
Undersampled dynamic X-ray tomography with dimension reduction Kalman filter, IEEE Transactions on Computational Imaging, 5 (2019), 492-501.
doi: 10.1109/TCI.2019.2896527. |
[27] |
A. Hauptmann, O. Öktem and C. Schönlieb, Image reconstruction in dynamic inverse problems with temporal models, preprint, arXiv: 2007.10238. |
[28] |
K. S. Kim and J. C. Ye, Low-dose limited view 4d ct reconstruction using patch-based low-rank regularization, In 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC), (2013), 1–4.
doi: 10.1109/NSSMIC.2013.6829178. |
[29] |
B. Klingenberg, J. Curry and A. Dougherty,
Non-negative matrix factorization: Ill-posedness and a geometric algorithm, Pattern Recognition, 42 (2009), 918-928.
doi: 10.1016/j.patcog.2008.08.026. |
[30] |
D. Kressner and A. Uschmajew,
On low-rank approximability of solutions to high-dimensional operator equations and eigenvalue problems, Linear Algebra Appl., 493 (2016), 556-572.
doi: 10.1016/j.laa.2015.12.016. |
[31] |
K. Lange, Optimization, Springer Texts in Statistics, Springer-Verlag, New York, 2004.
doi: 10.1007/978-1-4757-4182-7. |
[32] |
K. Lange, D. R. Hunter and I. Yang,
Optimization transfer using surrogate objective functions, J. Comput. Graph. Statist., 9 (2000), 1-59.
doi: 10.2307/1390605. |
[33] |
L. Lecharlier and C. De Mol,
Regularized blind deconvolution with poisson data, Journal of Physics: Conference Series, 464 (2013), 012003.
doi: 10.1088/1742-6596/464/1/012003. |
[34] |
D. D. Lee and H. S. Seung,
Learning the parts of objects by non-negative matrix factorization, Nature, 401 (1999), 788-791.
doi: 10.1038/44565. |
[35] |
D. D. Lee and H. S. Seung, Algorithms for non-negative matrix factorization, In Advances in Neural Information Processing Systems 13 - NIPS 2000, (2001), 535–541. |
[36] |
J. Leuschner, M. Schmidt, P. Fernsel, D. Lachmund, T. Boskamp and P. Maass,
Supervised non-negative matrix factorization methods for maldi imaging applications, Bioinformatics, 35 (2019), 1940-1947.
doi: 10.1093/bioinformatics/bty909. |
[37] |
S. G. Lingala, Y. Hu, E. V. R. DiBella and M. Jacob,
Accelerated dynamic MRI exploiting sparsity and low-rank structure: K-t SLR, IEEE Transactions on Medical Imaging, 30 (2011), 1042-1054.
doi: 10.1109/TMI.2010.2100850. |
[38] |
F. Lucka, N. Huynh, M. Betcke, E. Zhang, P. Beard, B. Cox and S. Arridge,
Enhancing compressed sensing 4D photoacoustic tomography by simultaneous motion estimation, SIAM J. Imaging Sci., 11 (2018), 2224-2253.
doi: 10.1137/18M1170066. |
[39] |
M. Lustig, J. M. Santos, D. L. Donoho and J. M. Pauly, kt SPARSE: High frame rate dynamic MRI exploiting spatio-temporal sparsity, In Proceedings of the 13th annual meeting of ISMRM, Seattle, 2420 (2006). |
[40] |
E. Niemi, M. Lassas, A. Kallonen, L. Harhanen, K. Hämäläinen and S. Siltanen,
Dynamic multi-source X-ray tomography using a spacetime level set method, J. Comput. Phys., 291 (2015), 218-237.
doi: 10.1016/j.jcp.2015.03.016. |
[41] |
J. P. Oliveira, J. M. Bioucas-Dias and M. A. T. Figueiredo,
Review: Adaptive total variation image deblurring: A majorization-minimization approach, Signal Processing, 89 (2009), 1683-1693.
doi: 10.1016/j.sigpro.2009.03.018. |
[42] |
P. Paatero and U. Tapper,
Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values, Environmetrics, 5 (1994), 111-126.
doi: 10.1002/env.3170050203. |
[43] |
K. Pearson,
On lines and planes of closest fit to systems of points in space, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2 (1901), 559-572.
doi: 10.1080/14786440109462720. |
[44] |
U. Schmitt and A. K. Louis,
Efficient algorithms for the regularization of dynamic inverse problems: Ⅰ. Theory, Inverse Problems, 18 (2002), 645-658.
doi: 10.1088/0266-5611/18/3/308. |
[45] |
U. Schmitt, A. K. Louis, C. Wolters and M. Vauhkonen,
Efficient algorithms for the regularization of dynamic inverse problems: Ⅱ. Applications, Inverse Problems, 18 (2002), 659-676.
doi: 10.1088/0266-5611/18/3/309. |
[46] |
J. A. Steeden, G. T. Kowalik, O. Tann, M. Hughes, K. H. Mortensen and V. Muthurangu,
Real-time assessment of right and left ventricular volumes and function in children using high spatiotemporal resolution spiral bSSFP with compressed sensing, Journal of Cardiovascular Magnetic Resonance, 20 (2018), 79.
doi: 10.1186/s12968-018-0500-9. |
[47] |
M. Tao and X. Yuan,
Recovering low-rank and sparse components of matrices from incomplete and noisy observations, SIAM J. Optim., 21 (2011), 57-81.
doi: 10.1137/100781894. |
[48] |
B. R. Trémoulhéac, Low-rank and Sparse Reconstruction in Dynamic Magnetic Resonance Imaging Via Proximal Splitting Methods, PhD thesis, University College London, 2014. |
[49] |
B. R. Trémoulhéac, N. Dikaios, D. Atkinson and S. Arridge,
Dynamic MR image reconstruction-separation from undersampled (k, t)-space via low-rank plus sparse prior, IEEE Transactions on Medical Imaging, 33 (2014), 1689-1701.
doi: 10.1109/TMI.2014.2321190. |
[50] |
A. Uschmajew, On Low-Rank Approximation in Tensor Product Hilbert Spaces, PhD thesis, Technische Universität Berlin, 2013. |
[51] |
S. Wundrak, J. Paul, J. Ulrici, E. Hell and V. Rasche,
A small surrogate for the golden angle in time-resolved radial MRI based on generalized Fibonacci sequences, IEEE Transactions on Medical Imaging, 34 (2014), 1262-1269.
doi: 10.1109/TMI.2014.2382572. |
[52] |
X. Yu, S. Chen, Z. Hu, M. Liu, Y. Chen, P. Shi and H. Liu,
Sparse/low rank constrained reconstruction for dynamic pet imaging, PLOS ONE, 10 (2015), 1-18.
doi: 10.1371/journal.pone.0142019. |
[53] |
X. M. Yuan and J. F. Yang,
Sparse and low-rank matrix decomposition via alternating direction methods, Pac. J. Optim., 9 (2013), 167-180.
|























Algorithm 1 $\texttt{gradTV}$ |
1: Initialise: 2: Input: 3: repeat 4: 5: 6: 7: 8: 9: until STOPPINGCRITERION satisfied 10: 11: return |
Algorithm 1 $\texttt{gradTV}$ |
1: Initialise: 2: Input: 3: repeat 4: 5: 6: 7: 8: 9: until STOPPINGCRITERION satisfied 10: 11: return |
Algorithm | Description |
BC | Joint reconstruction and feature extraction with the NMF model BC without constructing $X$, see algorithm in Theorem 2.3 |
BC-X | Joint reconstruction and feature extraction with NMF model BC-X and explicit construction of $X$, see algorithm in Theorem 2.2 |
sBC | Joint reconstruction and feature extraction method with NMF model sBC for stationary operator, see algorithm in Corollary 1 |
$\texttt{gradTV}$ | Low-rank based reconstruction method for $X$, see Algorithm 1 |
$\texttt{gradTV_PCA}$ | Separated reconstruction and feature extraction with Algorithm 1 and subsequent PCA computation |
$\texttt{gradTV_NMF}$ | Separated reconstruction and feature extraction with Algorithm 1 and subsequent NMF computation based on the model in (6) |
Algorithm | Description |
BC | Joint reconstruction and feature extraction with the NMF model BC without constructing $X$, see algorithm in Theorem 2.3 |
BC-X | Joint reconstruction and feature extraction with NMF model BC-X and explicit construction of $X$, see algorithm in Theorem 2.2 |
sBC | Joint reconstruction and feature extraction method with NMF model sBC for stationary operator, see algorithm in Corollary 1 |
$\texttt{gradTV}$ | Low-rank based reconstruction method for $X$, see Algorithm 1 |
$\texttt{gradTV_PCA}$ | Separated reconstruction and feature extraction with Algorithm 1 and subsequent PCA computation |
$\texttt{gradTV_NMF}$ | Separated reconstruction and feature extraction with Algorithm 1 and subsequent NMF computation based on the model in (6) |
BC | BC-X | $\texttt{gradTV}$ | |||||||
Noise | $\vert \mathcal{I}_t \vert$ | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | ||
1% | 7 | (34.130) | (0.9016) | 32.969 | 0.8382 | 31.463 | 0.8414 | ||
1% | 12 | 35.050 | 0.9068 | 33.919 | 0.8496 | 34.309 | 0.8839 | ||
3% | 12 | 30.148 | 0.7484 | 28.119 | 0.5708 | 29.375 | 0.6698 |
BC | BC-X | $\texttt{gradTV}$ | |||||||
Noise | $\vert \mathcal{I}_t \vert$ | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | ||
1% | 7 | (34.130) | (0.9016) | 32.969 | 0.8382 | 31.463 | 0.8414 | ||
1% | 12 | 35.050 | 0.9068 | 33.919 | 0.8496 | 34.309 | 0.8839 | ||
3% | 12 | 30.148 | 0.7484 | 28.119 | 0.5708 | 29.375 | 0.6698 |
BC | BC-X | $\texttt{gradTV}$ | ||||||
Parameter | 1% noise | 3% noise | 1% noise | 3% noise | 1% noise | 3% noise | ||
$\alpha$ | - | - | 70 | 70 | - | - | ||
$\mu_C$ | 0.1 | 0.1 | 0.1 | 0.1 | - | - | ||
$\tau$ | 10 | 50 | 6 | 20 | - | - | ||
$\rho_{\text{grad}}$ | - | - | - | - | $1\cdot 10^{-3}$ | $8\cdot 10^{-4}$ | ||
$\rho_{\text{thr}}$ | - | - | - | - | $7\cdot 10^{-4}$ | $1\cdot 10^{-3}$ | ||
$\rho_{\text{TV}}$ | - | - | - | - | $1\cdot 10^{-2}$ | $2.5\cdot 10^{-2}$ | ||
$\tilde{\mu}_{C}$ | - | - | - | - | $0.1$ | $0.1$ |
BC | BC-X | $\texttt{gradTV}$ | ||||||
Parameter | 1% noise | 3% noise | 1% noise | 3% noise | 1% noise | 3% noise | ||
$\alpha$ | - | - | 70 | 70 | - | - | ||
$\mu_C$ | 0.1 | 0.1 | 0.1 | 0.1 | - | - | ||
$\tau$ | 10 | 50 | 6 | 20 | - | - | ||
$\rho_{\text{grad}}$ | - | - | - | - | $1\cdot 10^{-3}$ | $8\cdot 10^{-4}$ | ||
$\rho_{\text{thr}}$ | - | - | - | - | $7\cdot 10^{-4}$ | $1\cdot 10^{-3}$ | ||
$\rho_{\text{TV}}$ | - | - | - | - | $1\cdot 10^{-2}$ | $2.5\cdot 10^{-2}$ | ||
$\tilde{\mu}_{C}$ | - | - | - | - | $0.1$ | $0.1$ |
BC | BC-X | $\texttt{gradTV}$ | ||||||
Parameter | 1% noise | 3% noise | 1% noise | 3% noise | 1% noise | 3% noise | ||
$\alpha$ | - | - | $3\cdot 10^{2}$ | $3\cdot 10^{2}$ | - | - | ||
$\mu_C$ | 1 | 1 | 1 | 1 | - | - | ||
$\tau$ | $1.3\cdot 10^{2}$ | $4.3\cdot 10^{2}$ | $90$ | $3\cdot 10^{2}$ | - | - | ||
$\rho_{\text{grad}}$ | - | - | - | - | $2\cdot 10^{-4}$ | $8\cdot 10^{-5}$ | ||
$\rho_{\text{thr}}$ | - | - | - | - | $2\cdot 10^{-4}$ | $2.5\cdot 10^{-4}$ | ||
$\rho_{\text{TV}}$ | - | - | - | - | $2\cdot 10^{-2}$ | $4\cdot 10^{-2}$ | ||
$\tilde{\mu}_{C}$ | - | - | - | - | $0.1$ | $0.1$ |
BC | BC-X | $\texttt{gradTV}$ | ||||||
Parameter | 1% noise | 3% noise | 1% noise | 3% noise | 1% noise | 3% noise | ||
$\alpha$ | - | - | $3\cdot 10^{2}$ | $3\cdot 10^{2}$ | - | - | ||
$\mu_C$ | 1 | 1 | 1 | 1 | - | - | ||
$\tau$ | $1.3\cdot 10^{2}$ | $4.3\cdot 10^{2}$ | $90$ | $3\cdot 10^{2}$ | - | - | ||
$\rho_{\text{grad}}$ | - | - | - | - | $2\cdot 10^{-4}$ | $8\cdot 10^{-5}$ | ||
$\rho_{\text{thr}}$ | - | - | - | - | $2\cdot 10^{-4}$ | $2.5\cdot 10^{-4}$ | ||
$\rho_{\text{TV}}$ | - | - | - | - | $2\cdot 10^{-2}$ | $4\cdot 10^{-2}$ | ||
$\tilde{\mu}_{C}$ | - | - | - | - | $0.1$ | $0.1$ |
Parameter | BC | BC-X | gradTV |
$\alpha$ | - | $70$ | - |
$\mu_C$ | $0.1$ | $0.1$ | - |
$\tau$ | $10$ | $10$ | - |
$\rho_{\text{grad}}$ | - | - | $1\cdot 10^{-3}$ |
$\rho_{\text{thr}}$ | - | - | $2\cdot 10^{-4}$ |
$\rho_{\text{TV}}$ | - | - | $1\cdot 10^{-2}$ |
$\tilde{\mu}_{C}$ | - | - | $0.1$ |
Parameter | BC | BC-X | gradTV |
$\alpha$ | - | $70$ | - |
$\mu_C$ | $0.1$ | $0.1$ | - |
$\tau$ | $10$ | $10$ | - |
$\rho_{\text{grad}}$ | - | - | $1\cdot 10^{-3}$ |
$\rho_{\text{thr}}$ | - | - | $2\cdot 10^{-4}$ |
$\rho_{\text{TV}}$ | - | - | $1\cdot 10^{-2}$ |
$\tilde{\mu}_{C}$ | - | - | $0.1$ |
[1] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[2] |
Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems and Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076 |
[3] |
Xianchao Xiu, Lingchen Kong. Rank-one and sparse matrix decomposition for dynamic MRI. Numerical Algebra, Control and Optimization, 2015, 5 (2) : 127-134. doi: 10.3934/naco.2015.5.127 |
[4] |
Yangyang Xu, Ruru Hao, Wotao Yin, Zhixun Su. Parallel matrix factorization for low-rank tensor completion. Inverse Problems and Imaging, 2015, 9 (2) : 601-624. doi: 10.3934/ipi.2015.9.601 |
[5] |
Yun Cai, Song Li. Convergence and stability of iteratively reweighted least squares for low-rank matrix recovery. Inverse Problems and Imaging, 2017, 11 (4) : 643-661. doi: 10.3934/ipi.2017030 |
[6] |
Zhouchen Lin. A review on low-rank models in data analysis. Big Data & Information Analytics, 2016, 1 (2&3) : 139-161. doi: 10.3934/bdia.2016001 |
[7] |
Huseyin Coskun. Nonlinear decomposition principle and fundamental matrix solutions for dynamic compartmental systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6553-6605. doi: 10.3934/dcdsb.2019155 |
[8] |
Daijun Jiang, Hui Feng, Jun Zou. Overlapping domain decomposition methods for linear inverse problems. Inverse Problems and Imaging, 2015, 9 (1) : 163-188. doi: 10.3934/ipi.2015.9.163 |
[9] |
Simon Foucart, Richard G. Lynch. Recovering low-rank matrices from binary measurements. Inverse Problems and Imaging, 2019, 13 (4) : 703-720. doi: 10.3934/ipi.2019032 |
[10] |
Junfeng Yang. Dynamic power price problem: An inverse variational inequality approach. Journal of Industrial and Management Optimization, 2008, 4 (4) : 673-684. doi: 10.3934/jimo.2008.4.673 |
[11] |
Ke Wei, Jian-Feng Cai, Tony F. Chan, Shingyu Leung. Guarantees of riemannian optimization for low rank matrix completion. Inverse Problems and Imaging, 2020, 14 (2) : 233-265. doi: 10.3934/ipi.2020011 |
[12] |
Jonathan H. Tu, Clarence W. Rowley, Dirk M. Luchtenburg, Steven L. Brunton, J. Nathan Kutz. On dynamic mode decomposition: Theory and applications. Journal of Computational Dynamics, 2014, 1 (2) : 391-421. doi: 10.3934/jcd.2014.1.391 |
[13] |
Steven L. Brunton, Joshua L. Proctor, Jonathan H. Tu, J. Nathan Kutz. Compressed sensing and dynamic mode decomposition. Journal of Computational Dynamics, 2015, 2 (2) : 165-191. doi: 10.3934/jcd.2015002 |
[14] |
Hao Zhang, Scott T. M. Dawson, Clarence W. Rowley, Eric A. Deem, Louis N. Cattafesta. Evaluating the accuracy of the dynamic mode decomposition. Journal of Computational Dynamics, 2020, 7 (1) : 35-56. doi: 10.3934/jcd.2020002 |
[15] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[16] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems and Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[17] |
Michael Herty, Giuseppe Visconti. Kinetic methods for inverse problems. Kinetic and Related Models, 2019, 12 (5) : 1109-1130. doi: 10.3934/krm.2019042 |
[18] |
Wei Wan, Weihong Guo, Jun Liu, Haiyang Huang. Non-local blind hyperspectral image super-resolution via 4d sparse tensor factorization and low-rank. Inverse Problems and Imaging, 2020, 14 (2) : 339-361. doi: 10.3934/ipi.2020015 |
[19] |
Dongho Kim, Eun-Jae Park. Adaptive Crank-Nicolson methods with dynamic finite-element spaces for parabolic problems. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 873-886. doi: 10.3934/dcdsb.2008.10.873 |
[20] |
Bernadette N. Hahn. Dynamic linear inverse problems with moderate movements of the object: Ill-posedness and regularization. Inverse Problems and Imaging, 2015, 9 (2) : 395-413. doi: 10.3934/ipi.2015.9.395 |
2020 Impact Factor: 1.639
Tools
Metrics
Other articles
by authors
[Back to Top]