doi: 10.3934/ipi.2021064
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

An inverse problem for a fractional diffusion equation with fractional power type nonlinearities

Institute for Pure and Applied Mathematics, University of California, Los Angeles, CA 90095, USA

*Corresponding author: Li Li

Received  April 2021 Revised  August 2021 Early access October 2021

We study the well-posedness of a semi-linear fractional diffusion equation and formulate an associated inverse problem. We determine fractional power type nonlinearities from the exterior partial measurements of the Dirichlet-to-Neumann map. Our arguments are based on a first order linearization as well as the parabolic Runge approximation property.

Citation: Li Li. An inverse problem for a fractional diffusion equation with fractional power type nonlinearities. Inverse Problems & Imaging, doi: 10.3934/ipi.2021064
References:
[1]

B. BarriosI. PeralF. Soria and E. Valdinoci, A Widder's type theorem for the heat equation with nonlocal diffusion, Arch. Ration. Mech. Anal., 213 (2014), 629-650.  doi: 10.1007/s00205-014-0733-1.  Google Scholar

[2]

S. BhattacharyyaT. Ghosh and G. Uhlmann, Inverse problems for the fractional-Laplacian with lower order non-local perturbations, Trans. Amer. Math. Soc., 374 (2021), 3053-3075.  doi: 10.1090/tran/8151.  Google Scholar

[3]

M. Cekić, Y.-H. Lin and A. Rüland, The Calderón problem for the fractional Schrödinger equation with drift, Calc. Var. Partial Differential Equations, 59 (2020), 46pp. doi: 10.1007/s00526-020-01740-6.  Google Scholar

[4]

G. Covi, An inverse problem for the fractional Schrödinger equation in a magnetic field, Inverse Problems, 36 (2020), 24pp. doi: 10.1088/1361-6420/ab661a.  Google Scholar

[5]

G. CoviK. Mönkkönen and J. Railo, Unique continuation property and Poincaré inequality for higher order fractional laplacians with applications in inverse problems, Inverse Probl. Imaging, 15 (2021), 641-681.  doi: 10.3934/ipi.2021009.  Google Scholar

[6]

G. Covi, K. Mönkkönen, J. Railo and G. Uhlmann, The higher order fractional Calderón problem for linear local operators: Uniqueness, preprint, arXiv2008.10227. Google Scholar

[7]

S. DipierroO. Savin and E. Valdinoci, Local approximation of arbitrary functions by solutions of nonlocal equations, J. Geom. Anal., 29 (2019), 1428-1455.  doi: 10.1007/s12220-018-0045-z.  Google Scholar

[8]

M. Felsinger and M. Kassmann, Local regularity for parabolic nonlocal operators, Comm. Partial Differential Equations, 38 (2013), 1539-1573.  doi: 10.1080/03605302.2013.808211.  Google Scholar

[9]

X. Fernández-Real and X. Ros-Oton, Boundary regularity for the fractional heat equation, Rev. R. Acad. Cienc. Exactas ${{F}^{\cdot \cdot \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{a}}}s$. Nat. Ser. A Mat. RACSAM, 110 (2016), 49-64.  doi: 10.1007/s13398-015-0218-6.  Google Scholar

[10]

T. GhoshY.-H. Lin and J. Xiao, The Calderón problem for variable coefficients nonlocal elliptic operators, Comm. Partial Differential Equations, 42 (2017), 1923-1961.  doi: 10.1080/03605302.2017.1390681.  Google Scholar

[11]

T. Ghosh, A. Rüland, M. Salo and G. Uhlmann, Uniqueness and reconstruction for the fractional Calderón problem with a single measurement, J. Funct. Anal., 279 (2020), 42pp. doi: 10.1016/j.jfa.2020.108505.  Google Scholar

[12]

T. GhoshM. Salo and G. Uhlmann, The Calderón problem for the fractional Schrödinger equation, Anal. PDE, 13 (2020), 455-475.  doi: 10.2140/apde.2020.13.455.  Google Scholar

[13]

A. Greco and A. Iannizzotto, Existence and convexity of solutions of the fractional heat equation, Commun. Pure Appl. Anal., 16 (2017), 2201-2226.  doi: 10.3934/cpaa.2017109.  Google Scholar

[14]

Y. Kian and G. Uhlmann, Recovery of nonlinear terms for reaction diffusion equations from boundary measurements, preprint, arXiv2011.06039. Google Scholar

[15]

K. Krupchyk and G. Uhlmann, A remark on partial data inverse problems for semilinear elliptic equations, Proc. Amer. Math. Soc., 148 (2020), 681-685.  doi: 10.1090/proc/14844.  Google Scholar

[16]

Y. KurylevM. Lassas and G. Uhlmann, Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations, Invent. Math., 212 (2018), 781-857.  doi: 10.1007/s00222-017-0780-y.  Google Scholar

[17]

R.-Y. Lai and Y.-H. Lin, Inverse problems for fractional semilinear elliptic equations, preprint, arXiv{2004.00549}. Google Scholar

[18]

R.-Y. LaiY.-H. Lin and A. Rüland, The Calderón problem for a space-time fractional parabolic equation, SIAM J. Math. Anal., 52 (2020), 2655-2688.  doi: 10.1137/19M1270288.  Google Scholar

[19]

R.-Y. Lai and T. Zhou, An inverse problem for non-linear fractional magnetic schrodinger equation, preprint, arXiv2103.08180. Google Scholar

[20]

M. LassasT. LiimatainenY.-H. Lin and M. Salo, Inverse problems for elliptic equations with power type nonlinearities, J. Math. Pures Appl., 145 (2021), 44-82.  doi: 10.1016/j.matpur.2020.11.006.  Google Scholar

[21]

L. Li, Determining the magnetic potential in the fractional magnetic Calderón problem, Comm. Partial Differential Equations, 46 (2021), 1017-1026.  doi: 10.1080/03605302.2020.1857406.  Google Scholar

[22]

L. Li, A fractional parabolic inverse problem involving a time-dependent magnetic potential, SIAM J. Math. Anal., 53 (2021), 435-452.  doi: 10.1137/20M1359638.  Google Scholar

[23]

L. Li, On an inverse problem for a fractional semilinear elliptic equation involving a magnetic potential, J. Differential Equations, 296 (2021), 170-185.  doi: 10.1016/j.jde.2021.06.003.  Google Scholar

[24]

T. Liimatainen, Y.-H. Lin, M. Salo and T. Tyni, Inverse problems for elliptic equations with fractional power type nonlinearities, preprint, arXiv2012.04944. Google Scholar

[25]

C. MiaoB. Yuan and B. Zhang, Well-posedness of the Cauchy problem for the fractional power dissipative equations, Nonlinear Anal., 68 (2008), 461-484.  doi: 10.1016/j.na.2006.11.011.  Google Scholar

[26]

A. Rüland and M. Salo, The fractional Calderón problem: Low regularity and stability, Nonlinear Anal., 193 (2020), 56pp. doi: 10.1016/j.na.2019.05.010.  Google Scholar

[27]

A. Rüland and M. Salo, Quantitative approximation properties for the fractional heat equation, Math. Control Relat. Fields, 10 (2020), 1-26.  doi: 10.3934/mcrf.2019027.  Google Scholar

[28]

L. Silvestre, Hölder estimates for advection fractional-diffusion equations, Ann. Sc. Norm. Super. Pisa Cl. Sci., 11 (2012), 843-855.   Google Scholar

[29]

Z. Sun and G. Uhlmann, Inverse problems in quasilinear anisotropic media, Amer. J. Math., 119 (1997), 771-797.  doi: 10.1353/ajm.1997.0027.  Google Scholar

[30]

M. Taylor, Partial Differential Equations III: Nonlinear Equations, 2$^{nd}$ edition, Applied Mathematical Sciences, 117. Springer, New York, 2011. doi: 10.1007/978-1-4419-7049-7.  Google Scholar

[31]

J. L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 857-885.  doi: 10.3934/dcdss.2014.7.857.  Google Scholar

show all references

References:
[1]

B. BarriosI. PeralF. Soria and E. Valdinoci, A Widder's type theorem for the heat equation with nonlocal diffusion, Arch. Ration. Mech. Anal., 213 (2014), 629-650.  doi: 10.1007/s00205-014-0733-1.  Google Scholar

[2]

S. BhattacharyyaT. Ghosh and G. Uhlmann, Inverse problems for the fractional-Laplacian with lower order non-local perturbations, Trans. Amer. Math. Soc., 374 (2021), 3053-3075.  doi: 10.1090/tran/8151.  Google Scholar

[3]

M. Cekić, Y.-H. Lin and A. Rüland, The Calderón problem for the fractional Schrödinger equation with drift, Calc. Var. Partial Differential Equations, 59 (2020), 46pp. doi: 10.1007/s00526-020-01740-6.  Google Scholar

[4]

G. Covi, An inverse problem for the fractional Schrödinger equation in a magnetic field, Inverse Problems, 36 (2020), 24pp. doi: 10.1088/1361-6420/ab661a.  Google Scholar

[5]

G. CoviK. Mönkkönen and J. Railo, Unique continuation property and Poincaré inequality for higher order fractional laplacians with applications in inverse problems, Inverse Probl. Imaging, 15 (2021), 641-681.  doi: 10.3934/ipi.2021009.  Google Scholar

[6]

G. Covi, K. Mönkkönen, J. Railo and G. Uhlmann, The higher order fractional Calderón problem for linear local operators: Uniqueness, preprint, arXiv2008.10227. Google Scholar

[7]

S. DipierroO. Savin and E. Valdinoci, Local approximation of arbitrary functions by solutions of nonlocal equations, J. Geom. Anal., 29 (2019), 1428-1455.  doi: 10.1007/s12220-018-0045-z.  Google Scholar

[8]

M. Felsinger and M. Kassmann, Local regularity for parabolic nonlocal operators, Comm. Partial Differential Equations, 38 (2013), 1539-1573.  doi: 10.1080/03605302.2013.808211.  Google Scholar

[9]

X. Fernández-Real and X. Ros-Oton, Boundary regularity for the fractional heat equation, Rev. R. Acad. Cienc. Exactas ${{F}^{\cdot \cdot \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{a}}}s$. Nat. Ser. A Mat. RACSAM, 110 (2016), 49-64.  doi: 10.1007/s13398-015-0218-6.  Google Scholar

[10]

T. GhoshY.-H. Lin and J. Xiao, The Calderón problem for variable coefficients nonlocal elliptic operators, Comm. Partial Differential Equations, 42 (2017), 1923-1961.  doi: 10.1080/03605302.2017.1390681.  Google Scholar

[11]

T. Ghosh, A. Rüland, M. Salo and G. Uhlmann, Uniqueness and reconstruction for the fractional Calderón problem with a single measurement, J. Funct. Anal., 279 (2020), 42pp. doi: 10.1016/j.jfa.2020.108505.  Google Scholar

[12]

T. GhoshM. Salo and G. Uhlmann, The Calderón problem for the fractional Schrödinger equation, Anal. PDE, 13 (2020), 455-475.  doi: 10.2140/apde.2020.13.455.  Google Scholar

[13]

A. Greco and A. Iannizzotto, Existence and convexity of solutions of the fractional heat equation, Commun. Pure Appl. Anal., 16 (2017), 2201-2226.  doi: 10.3934/cpaa.2017109.  Google Scholar

[14]

Y. Kian and G. Uhlmann, Recovery of nonlinear terms for reaction diffusion equations from boundary measurements, preprint, arXiv2011.06039. Google Scholar

[15]

K. Krupchyk and G. Uhlmann, A remark on partial data inverse problems for semilinear elliptic equations, Proc. Amer. Math. Soc., 148 (2020), 681-685.  doi: 10.1090/proc/14844.  Google Scholar

[16]

Y. KurylevM. Lassas and G. Uhlmann, Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations, Invent. Math., 212 (2018), 781-857.  doi: 10.1007/s00222-017-0780-y.  Google Scholar

[17]

R.-Y. Lai and Y.-H. Lin, Inverse problems for fractional semilinear elliptic equations, preprint, arXiv{2004.00549}. Google Scholar

[18]

R.-Y. LaiY.-H. Lin and A. Rüland, The Calderón problem for a space-time fractional parabolic equation, SIAM J. Math. Anal., 52 (2020), 2655-2688.  doi: 10.1137/19M1270288.  Google Scholar

[19]

R.-Y. Lai and T. Zhou, An inverse problem for non-linear fractional magnetic schrodinger equation, preprint, arXiv2103.08180. Google Scholar

[20]

M. LassasT. LiimatainenY.-H. Lin and M. Salo, Inverse problems for elliptic equations with power type nonlinearities, J. Math. Pures Appl., 145 (2021), 44-82.  doi: 10.1016/j.matpur.2020.11.006.  Google Scholar

[21]

L. Li, Determining the magnetic potential in the fractional magnetic Calderón problem, Comm. Partial Differential Equations, 46 (2021), 1017-1026.  doi: 10.1080/03605302.2020.1857406.  Google Scholar

[22]

L. Li, A fractional parabolic inverse problem involving a time-dependent magnetic potential, SIAM J. Math. Anal., 53 (2021), 435-452.  doi: 10.1137/20M1359638.  Google Scholar

[23]

L. Li, On an inverse problem for a fractional semilinear elliptic equation involving a magnetic potential, J. Differential Equations, 296 (2021), 170-185.  doi: 10.1016/j.jde.2021.06.003.  Google Scholar

[24]

T. Liimatainen, Y.-H. Lin, M. Salo and T. Tyni, Inverse problems for elliptic equations with fractional power type nonlinearities, preprint, arXiv2012.04944. Google Scholar

[25]

C. MiaoB. Yuan and B. Zhang, Well-posedness of the Cauchy problem for the fractional power dissipative equations, Nonlinear Anal., 68 (2008), 461-484.  doi: 10.1016/j.na.2006.11.011.  Google Scholar

[26]

A. Rüland and M. Salo, The fractional Calderón problem: Low regularity and stability, Nonlinear Anal., 193 (2020), 56pp. doi: 10.1016/j.na.2019.05.010.  Google Scholar

[27]

A. Rüland and M. Salo, Quantitative approximation properties for the fractional heat equation, Math. Control Relat. Fields, 10 (2020), 1-26.  doi: 10.3934/mcrf.2019027.  Google Scholar

[28]

L. Silvestre, Hölder estimates for advection fractional-diffusion equations, Ann. Sc. Norm. Super. Pisa Cl. Sci., 11 (2012), 843-855.   Google Scholar

[29]

Z. Sun and G. Uhlmann, Inverse problems in quasilinear anisotropic media, Amer. J. Math., 119 (1997), 771-797.  doi: 10.1353/ajm.1997.0027.  Google Scholar

[30]

M. Taylor, Partial Differential Equations III: Nonlinear Equations, 2$^{nd}$ edition, Applied Mathematical Sciences, 117. Springer, New York, 2011. doi: 10.1007/978-1-4419-7049-7.  Google Scholar

[31]

J. L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 857-885.  doi: 10.3934/dcdss.2014.7.857.  Google Scholar

[1]

R.G. Duran, J.I. Etcheverry, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition. Discrete & Continuous Dynamical Systems, 1998, 4 (3) : 497-506. doi: 10.3934/dcds.1998.4.497

[2]

G. Acosta, Julián Fernández Bonder, P. Groisman, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition in several space dimensions. Discrete & Continuous Dynamical Systems - B, 2002, 2 (2) : 279-294. doi: 10.3934/dcdsb.2002.2.279

[3]

María Ángeles García-Ferrero, Angkana Rüland, Wiktoria Zatoń. Runge approximation and stability improvement for a partial data Calderón problem for the acoustic Helmholtz equation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021049

[4]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[5]

Nguyen Huy Tuan, Mokhtar Kirane, Long Dinh Le, Van Thinh Nguyen. On an inverse problem for fractional evolution equation. Evolution Equations & Control Theory, 2017, 6 (1) : 111-134. doi: 10.3934/eect.2017007

[6]

Mohsen Tadi. A computational method for an inverse problem in a parabolic system. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 205-218. doi: 10.3934/dcdsb.2009.12.205

[7]

Chuan-Fu Yang, Natalia Pavlovna Bondarenko. A partial inverse problem for the Sturm-Liouville operator on the lasso-graph. Inverse Problems & Imaging, 2019, 13 (1) : 69-79. doi: 10.3934/ipi.2019004

[8]

Valter Pohjola. An inverse problem for the magnetic Schrödinger operator on a half space with partial data. Inverse Problems & Imaging, 2014, 8 (4) : 1169-1189. doi: 10.3934/ipi.2014.8.1169

[9]

Ru-Yu Lai. Global uniqueness for an inverse problem for the magnetic Schrödinger operator. Inverse Problems & Imaging, 2011, 5 (1) : 59-73. doi: 10.3934/ipi.2011.5.59

[10]

Teemu Tyni, Valery Serov. Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line. Inverse Problems & Imaging, 2019, 13 (1) : 159-175. doi: 10.3934/ipi.2019009

[11]

Giovanni Covi, Keijo Mönkkönen, Jesse Railo. Unique continuation property and Poincaré inequality for higher order fractional Laplacians with applications in inverse problems. Inverse Problems & Imaging, 2021, 15 (4) : 641-681. doi: 10.3934/ipi.2021009

[12]

Lili Chang, Wei Gong, Guiquan Sun, Ningning Yan. PDE-constrained optimal control approach for the approximation of an inverse Cauchy problem. Inverse Problems & Imaging, 2015, 9 (3) : 791-814. doi: 10.3934/ipi.2015.9.791

[13]

H. Gajewski, I. V. Skrypnik. To the uniqueness problem for nonlinear parabolic equations. Discrete & Continuous Dynamical Systems, 2004, 10 (1&2) : 315-336. doi: 10.3934/dcds.2004.10.315

[14]

Mads Kyed. On a mapping property of the Oseen operator with rotation. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1315-1322. doi: 10.3934/dcdss.2013.6.1315

[15]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[16]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[17]

Rajesh Dhayal, Muslim Malik, Syed Abbas, Anil Kumar, Rathinasamy Sakthivel. Approximation theorems for controllability problem governed by fractional differential equation. Evolution Equations & Control Theory, 2021, 10 (2) : 411-429. doi: 10.3934/eect.2020073

[18]

Kenichi Sakamoto, Masahiro Yamamoto. Inverse source problem with a final overdetermination for a fractional diffusion equation. Mathematical Control & Related Fields, 2011, 1 (4) : 509-518. doi: 10.3934/mcrf.2011.1.509

[19]

Jaan Janno, Kairi Kasemets. Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (1) : 125-149. doi: 10.3934/ipi.2017007

[20]

Ru-Yu Lai, Laurel Ohm. Inverse problems for the fractional Laplace equation with lower order nonlinear perturbations. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021051

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (65)
  • HTML views (81)
  • Cited by (0)

Other articles
by authors

[Back to Top]