\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Nonconvex regularization for blurred images with Cauchy noise

Abstract Full Text(HTML) Figure(5) / Table(4) Related Papers Cited by
  • In this paper, we propose a nonconvex regularization model for images damaged by Cauchy noise and blur. This model is based on the method of the total variational proposed by Federica, Dong and Zeng [SIAM J. Imaging Sci.(2015)], where a variational approach for restoring blurred images with Cauchy noise is used. Here we consider the nonconvex regularization, namely a weighted difference of $ l_1 $-norm and $ l_2 $-norm coupled with wavelet frame, the alternating direction method of multiplier is carried out for this minimization problem, we describe the details of the algorithm and prove its convergence. Numerical experiments are tested by adding different levels of noise and blur, results show that our method can denoise and deblur the image better.

    Mathematics Subject Classification: 58F15, 58F17.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Testing images

    Figure 2.  Restored images from blurred and noised images by different methods. (a):Images with Cauchy noise ($ \xi = 0.02 $) and Gaussian blur; (b): Results by median filter (MD); (c): Results by convex TV method; (d): Results by our method

    Figure 3.  Restored images from blurred and noised images by different methods. (a):Images with Cauchy noise ($ \xi = 0.04 $) and Gaussian blur; (b): Results by median filter (MD); (c): Results by convex TV method; (d): Results by our method

    Figure 4.  Restored images from blurred and noised images by different methods. (a):Images destroyed by Cauchy noise($ \xi = 0.02 $) and motion blur; (b): Results by median filter (MD); (c): Results by convex TV method; (d): Results by our method

    Figure 5.  Restored images from blurred and noised images by different methods. (a):Images destroyed by Cauchy noise($ \xi = 0.02 $) and average blur; (b): Results by median filter (MD); (c): Results by convex TV method; (d): Results by our method

    Table 1.  The SNR, PSNR and SSIM values for corrupted images and recovered images given by different methods ($ \xi = 0.02 $, Gaussian blur)

    Image Value Corrupted MD TV Ours
    Lena SNR 5.76 12.43 14.31 14.93
    PSNR 18.47 24.39 27.64 28.21
    SSIM 0.1951 0.7884 0.8168 0.8389
    Cameraman SNR 6.16 11.72 13.69 14.57
    PSNR 18.19 24.39 26.08 26.84
    SSIM 0.1566 0.7483 0.8061 0.8083
    Parrot SNR 6.65 12.15 14.85 15.72
    PSNR 18.27 24.42 26.72 27.50
    SSIM 0.1909 0.7833 0.8239 0.8394
    Boat SNR 6.80 13.85 15.40 16.52
    PSNR 18.02 25.70 27.02 28.07
    SSIM 0.1981 0.7935 0.8286 0.8559
    Kitten SNR 6.15 10.13 11.86 13.01
    PSNR 17.98 22.67 24.03 25.06
    SSIM 0.2496 0.7195 0.7696 0.8161
    House SNR 5.03 13.70 16.11 17.05
    PSNR 18.38 28.48 30.52 31.44
    SSIM 0.1425 0.7908 0.8304 0.8494
     | Show Table
    DownLoad: CSV

    Table 2.  The SNR, PSNR and SSIM values for corrupted images and recovered images given by different methods ($ \xi = 0.04 $, Gaussian blur)

    Image Value Corrupted MD TV Ours
    Lena SNR 3.8 11.24 12.94 13.35
    PSNR 15.87 23.53 26.31 26.65
    SSIM 0.0928 0.6944 0.7675 0.7928
    Cameraman SNR 4.16 10.88 12.39 13.09
    PSNR 15.67 23.53 24.94 25.44
    SSIM 0.0761 0.6241 0.7532 0.7602
    Parrot SNR 4.58 11.19 13.46 14.12
    PSNR 15.75 23.55 25.40 25.91
    SSIM 0.0964 0.6752 0.7763 0.7847
    Boat SNR 4.65 12.59 14.13 14.81
    PSNR 15.33 24.50 25.83 26.41
    SSIM 0.0932 0.6936 0.7843 0.8074
    Kitten SNR 4.24 9.52 10.48 11.37
    PSNR 15.46 22.02 22.76 23.48
    SSIM 0.1235 0.6611 0.6967 0.7413
    House SNR 3.19 11.83 14.61 15.29
    PSNR 15.53 26.49 29.16 29.70
    SSIM 0.0636 0.6628 0.8159 0.8216
     | Show Table
    DownLoad: CSV

    Table 3.  The SNR, PSNR and SSIM values for corrupted images and recovered images given by different methods($ \xi = 0.02 $, motion blur)

    Image Value Corrupted MD TV Ours
    Lena SNR 4.15 7.78 11.66 12.40
    PSNR 17.37 22.05 25.16 25.73
    SSIM 0.1294 0.6209 0.7328 0.7969
    Cameraman SNR 4.98 8.60 11.60 12.42
    PSNR 17.19 21.53 24.13 24.60
    SSIM 0.1149 0.6478 0.7777 0.7797
    Parrot SNR 5.73 9.61 12.16 13.28
    PSNR 17.46 22.00 24.15 24.73
    SSIM 0.1574 0.7011 0.7782 0.7848
    Boat SNR 5.93 10.80 13.02 13.68
    PSNR 17.23 22.77 24.77 25.27
    SSIM 0.1458 0.6731 0.7652 0.7675
    Kitten SNR 4.93 7.63 10.15 10.76
    PSNR 16.92 20.37 22.44 22.87
    SSIM 0.1802 0.5619 0.6901 0.7216
    House SNR 4.54 10.72 14.85 15.65
    PSNR 18.01 25.60 29.34 30.03
    SSIM 0.1272 0.7211 0.8192 0.8264
     | Show Table
    DownLoad: CSV

    Table 4.  The SNR, PSNR and SSIM values for corrupted images and recovered images given by different methods($ \xi = 0.02 $, average blur)

    Image Value Corrupted MD TV Ours
    Lena SNR 5.87 12.88 14.56 15.35
    PSNR 18.55 26.47 27.87 28.64
    SSIM 0.1991 0.8031 0.8203 0.8534
    Cameraman SNR 6.20 12.04 14.17 15.16
    PSNR 18.15 24.65 26.54 27.40
    SSIM 0.1571 0.7623 0.8077 0.8309
    Parrot SNR 6.78 12.64 15.35 16.11
    PSNR 18.34 24.83 27.20 27.88
    SSIM 0.1938 0.7974 0.8228 0.8542
    Boat SNR 6.86 14.24 15.79 16.90
    PSNR 18.00 26.04 27.38 28.45
    SSIM 0.2014 0.8075 0.8345 0.8701
    Kitten SNR 6.31 10.62 12.46 13.39
    PSNR 18.06 23.08 24.56 25.38
    SSIM 0.2598 0.7467 0.7956 0.8327
    House SNR 5.09 14.08 16.54 17.41
    PSNR 18.39 28.70 30.98 31.81
    SSIM 0.1436 0.8013 0.8448 0.8581
     | Show Table
    DownLoad: CSV
  • [1] A. Achim and E. Kuruoglu, Image denoising using bivariate -stable distributions in the complex wavelet domain, IEEE Signal Process Letters, 12 (2005), 17-20.  doi: 10.1109/LSP.2004.839692.
    [2] H. C. Andrews and B. R. Hunt, Digital Image Restoration, Prentice-Hall, Englewood Cliffs, NJ, 1977.
    [3] G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, 2$^nd$ edition, Appl. Math. Sci., 147. Springer, New York, 2006.
    [4] A. BovikHandbook of Image and Video Processing, Academic Press, New York, 2000. 
    [5] S. BoydN. ParikhE. ChuB. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3 (2010), 1-122.  doi: 10.1561/9781601984616.
    [6] J. F. CaiR. ChanL. Shen and Z. Shen, Convergence analysis of tight framelet approach for missing data recovery, Adv. Comput. Math., 31 (2009), 87-113.  doi: 10.1007/s10444-008-9084-5.
    [7] J. F. CaiR. Chan and Z. Shen, Simultaneous cartoon and texture inpainting, Inverse Probl. Imaging, 4 (2010), 379-395.  doi: 10.3934/ipi.2010.4.379.
    [8] M. C. Cai and X. Q. Jin, BCCB preconditioners for solving linear systems from delay differential equations, Comput. Math. Appl., 50 (2005), 281-288.  doi: 10.1016/j.camwa.2004.03.019.
    [9] A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vision, 20 (2004), 89-97. 
    [10] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vision, 40 (2011), 120-145.  doi: 10.1007/s10851-010-0251-1.
    [11] R. ChanY. Dong and M. Hintermuller, An effcient two-phase $L_1$-TV method for restoring blurred images with impulse noise, IEEE Trans. Image Process., 19 (2010), 1731-1739.  doi: 10.1109/TIP.2010.2045148.
    [12] T. F. ChanG. H. Golub and P. Mulet, A nonlinear primal-dual method for total variation-based image restoration, SIAM J. Sci. Comput., 20 (1999), 1964-1977.  doi: 10.1137/S1064827596299767.
    [13] R. ChanH. Yang and T. Zeng, A two-stage image segmentation method for blurry images with Poisson or multiplicative gamma noise, SIAM J. Imaging Sci., 7 (2014), 98-127.  doi: 10.1137/130920241.
    [14] R. Chan and M. K. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38 (1996), 427-482.  doi: 10.1137/S0036144594276474.
    [15] R. Chan and X. Q. Jin, An Introduction to Iterative Toeplitz Solvers. Fundamentals of Algorithms, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2007. doi: 10.1137/1.9780898718850.
    [16] Y. ChangS. KadabaP. Doerschuk and S. Gelfand, Image restoration using recursive Markov random field models driven by Cauchy distributed noise, IEEE Signal Process. Lett., 8 (2001), 65-66. 
    [17] L. Condat, A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms, J. Optim. Theory Appl., 158 (2013), 460-479.  doi: 10.1007/s10957-012-0245-9.
    [18] I. DaubechiesG. Teschke and L. Vese, Iteratively solving linear inverse problems under general convex constraints, Inverse Probl. Imag., 1 (2007), 29-46.  doi: 10.3934/ipi.2007.1.29.
    [19] N. DeyL. Blanc-FeraudC. ZimmerP. RouxZ. KamJ. Olivo-Marin and J. Zerubia, Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution, Microsc. Res. Tech., 69 (2006), 260-266.  doi: 10.1002/jemt.20294.
    [20] B. DongH. JiZ. W. Shen and Y. H. Xu, Wavelet frame based blind image inpainting, Appl. Comput. Harmon. Anal., 32 (2012), 268-279.  doi: 10.1016/j.acha.2011.06.001.
    [21] Y. Dong and T. Zeng, A convex variational model for restoring blurred images with multiplicative noise, SIAM J. Imaging Sci., 6 (2013), 1598-1625.  doi: 10.1137/120870621.
    [22] M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries, IEEE Trans. Image Process., 15 (2006), 3736-3745.  doi: 10.1109/TIP.2006.881969.
    [23] M. EladJ. StarckP. Querre and D. Donoho, Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA), Appl. Comput Harmon Anal., 19 (2005), 340-358.  doi: 10.1016/j.acha.2005.03.005.
    [24] F. SciacchitanoY. Q. Dong and T. Y. Zeng, Variational approach for restoring blurred images with cauchy noise, SIAM J. Imaging Sci., 8 (2015), 1894-1922.  doi: 10.1137/140997816.
    [25] M. Figueiredo and J. Bioucas-Dias, Restoration of poissonian images using alternating direction optimization, IEEE Trans. Image Process., 19 (2010), 3133-3145.  doi: 10.1109/TIP.2010.2053941.
    [26] M. Figueiredo and R. Nowak, An EM algorithm for wavelet-based image restoration, IEEE Trans. Image Process., 12 (2003), 906-916.  doi: 10.1109/TIP.2003.814255.
    [27] G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7 (2008), 1005-1028.  doi: 10.1137/070698592.
    [28] T. Goldstein and S. Osher, The split Bregman method for L1-regularized problems, SIAM J. Imaging Sci., 2 (2009), 323-343.  doi: 10.1137/080725891.
    [29] R. Gonzalez and R. Woods, Digital Image Processing, 3rd edition, Pearson, London, 2008.
    [30] G. Grimmett and D. Welsh, Oxford Science Publications, Oxford Science Publications, London, 1986.
    [31] Y.-M. HuangM. K. Ng and Y.-W. Wen, A new total variation method for multiplicative noise removal, SIAM J. Imaging Sci., 2 (2009), 20-40.  doi: 10.1137/080712593.
    [32] M. Idan and J. Speyer, Cauchy estimation for linear scalar systems, IEEE Trans. Automat. Control, 55 (2010), 1329-1342.  doi: 10.1109/TAC.2010.2042009.
    [33] E. KuruogluW. Fitzgerald and P. Rayner, Near optimal detection of signals in impulsive noise modeled with asymmetric alpha-stable distribution, IEEE Commun. Lett., 2 (1998), 282-284. 
    [34] T. LeR. Chartrand and T. Asaki, A variational approach to reconstructing images corrupted by Poisson noise, J. Math. Imaging Vision, 27 (2007), 257-263.  doi: 10.1007/s10851-007-0652-y.
    [35] J. Liu, Y. Lou, G. Ni and T. Zeng, An image sharpening operator combined with framelet for image deblurring, Inverse Problems, 36 (2020), 29pp. doi: 10.1088/1361-6420/ab6df0.
    [36] J. Liu, A. Ni and G. Ni, A nonconvex $l_1(l_1 - l_2)$ model for image restoration with impulse noise, J. Comput. Appl. Math., 378 (2020), 16pp. doi: 10.1016/j.cam.2020.112934.
    [37] Y. F. Lou and M. Yan, Fast $L1-L2$ minimization via a proximal operator, J. Sci. Comput., 74 (2018), 767-785.  doi: 10.1007/s10915-017-0463-2.
    [38] Y. F. Lou, S. Osher and J. Xin, Computational aspects of constrained L1-L2 minimization for compressive sensing, J. Infect. Dis., (2015), 169–180.
    [39] Y. LouT. ZengS. Osher and J. Xin, A weighted difference of anisotropic and isotropic total variation model for image processing, SIAM J. Imaging Sci., 8 (2015), 1798-1823.  doi: 10.1137/14098435X.
    [40] J. MeiY. DongT. Huang and W. Yin, Cauchy noise removal by nonconvex ADMM with convergence guarantees, J. Sci Comput., 74 (2018), 743-766.  doi: 10.1007/s10915-017-0460-5.
    [41] M. Nikolova, A variational approach to remove outliers and impulse noise, J. Math. Imaging Vision, 20 (2004), 90-120. 
    [42] Y. PengJ. ChenX. Xu and F. Pu, SAR images statistical modeling and classification based on the mixture of alpha-stable distributions, Remote Sens., 5 (2013), 2145-2163.  doi: 10.3390/rs5052145.
    [43] N. PustelnikC. Chaux and J. Pesquet, Parallel proximal algorithm for image restoration using hybrid regularization, IEEE Trans. Image Process., 20 (2011), 2450-2462.  doi: 10.1109/TIP.2011.2128335.
    [44] P. Reeves, A non-gaussian turbulence simulation, Technical Report AFFDL-TR-, Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, (1969), 69–67.
    [45] L. RudinS. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268.  doi: 10.1016/0167-2789(92)90242-F.
    [46] S. SetzerG. Steidl and T. Teuber, Deblurring Poissonian images by split Bregman techniques, J. Visual Commun. Image Represent., 21 (2010), 193-199.  doi: 10.1016/j.jvcir.2009.10.006.
    [47] J. StarckM. Elad and D. Donoho, Image decomposition via the combination of sparse representations and a variational approach, IEEE Trans. Image Process., 14 (2005), 1570-1582.  doi: 10.1109/TIP.2005.852206.
    [48] T. WanN. Canagarajah and A. Achim, Segmentation of noisy colour images using Cauchy distribution in the complex wavelet domain, IET Image Process., 5 (2011), 159-170. 
    [49] C. Wu and X.-C. Tai, Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models, SIAM J. Imaging Sci., 3 (2010), 300-339.  doi: 10.1137/090767558.
    [50] J. YangY. Zhang and W. Yin, An effcient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise, SIAM J. Sci. Comput., 31 (2009), 2842-2865.  doi: 10.1137/080732894.
    [51] P. H. YinY. F. Lou and J. Xin, Minimization of $l_{1-2}$ for compressed sensing, SIAM J. Sci. Comput., 37 (2015), 536-563.  doi: 10.1137/140952363.
    [52] W. ZhouA. BovikH. Sheikh and E. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612. 
  • 加载中

Figures(5)

Tables(4)

SHARE

Article Metrics

HTML views(783) PDF downloads(504) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return