A discrete analog is considered for the inverse transmission eigenvalue problem, having applications in acoustics. We provide a well-posed inverse problem statement, develop a constructive procedure for solving this problem, prove uniqueness of solution, global solvability, local solvability, and stability. Our approach is based on the reduction of the discrete transmission eigenvalue problem to a linear system with polynomials of the spectral parameter in the boundary condition.
Citation: |
[1] |
T. Aktosun, D. Gintides and V. G. Papanicolaou, The uniqueness in the inverse problem for transmission eigenvalues for the spherically symmetric variable-speed wave equation, Inverse Problems, 27 (2011), 115004.
doi: 10.1088/0266-5611/27/11/115004.![]() ![]() ![]() |
[2] |
T. Aktosun and V. G. Papanicolaou, Inverse problem with transmission eigenvalues for the discrete Schrödinger equation, J. Math. Phys., 56 (2015), 082101.
doi: 10.1063/1.4927264.![]() ![]() ![]() |
[3] |
N. P. Bondarenko, Inverse Sturm-Liouville problem with analytical functions in the boundary condition, Open Math., 18 (2020), 512-528.
doi: 10.1515/math-2020-0188.![]() ![]() ![]() |
[4] |
N. P. Bondarenko, Solvability and stability of the inverse Sturm-Liouville problem with analytical functions in the boundary condition, Math. Meth. Appl. Sci., 43 (2020), 7009-7021.
doi: 10.1002/mma.6451.![]() ![]() ![]() |
[5] |
N. P. Bondarenko, A partial inverse Sturm-Liouville problem on an arbitrary graph, Math. Meth. Appl. Sci., 44 (2021), 6896-6910.
doi: 10.1002/mma.7231.![]() ![]() ![]() |
[6] |
N. P. Bondarenko, A partial inverse problem for the Sturm-Liouville operator on a star-shaped graph, Anal. Math. Phys., 8 (2018), 155-168.
doi: 10.1007/s13324-017-0172-x.![]() ![]() ![]() |
[7] |
N. P. Bondarenko and S. Buterin, On a local solvability and stability of the inverse transmission eigenvalue problem, Inverse Problems, 33 (2017), 115010.
doi: 10.1088/1361-6420/aa8cb5.![]() ![]() ![]() |
[8] |
S. A. Buterin, A. E. Choque-Rivero and M. A. Kuznetsova, On a regularization approach to the inverse transmission eigenvalue problem, Inverse Problems, 36 (2020), 105002.
doi: 10.1088/1361-6420/abaf3c.![]() ![]() ![]() |
[9] |
S. A. Buterin and C.-F. Yang, On an inverse transmission problem from complex eigenvalues, Results Math., 71 (2017), 859-866.
doi: 10.1007/s00025-015-0512-9.![]() ![]() ![]() |
[10] |
S. A. Buterin, C.-F. Yang and V. A. Yurko, On an open question in the inverse transmission eigenvalue problem, Inverse Problems, 31 (2015), 045003.
doi: 10.1088/0266-5611/31/4/045003.![]() ![]() ![]() |
[11] |
F. Cakoni, D. Colton and P. Monk, On the use of transmission eigenvalues to estimate the index of refraction from far field data, Inverse Problems, 23 (2007), 507-522.
doi: 10.1088/0266-5611/23/2/004.![]() ![]() ![]() |
[12] |
D. Colton and Y.-J. Leung, Complex eigenvalues and the inverse spectral problem for transmission eigenvalues, Inverse Problems, 29 (2013), 104008.
doi: 10.1088/0266-5611/29/10/104008.![]() ![]() ![]() |
[13] |
D. Gintides and N. Pallikarakis, The inverse transmission eigenvalue problem for a discontinuous refractive index, Inverse Problems, 33 (2017), 055006.
doi: 10.1088/1361-6420/aa5bf0.![]() ![]() ![]() |
[14] |
H. Hochstadt, On the construction of a Jacobi matrix from spectral data, Linear Algebra Appl., 8 (1974), 435-446.
doi: 10.1016/0024-3795(74)90077-9.![]() ![]() ![]() |
[15] |
H. Hochstadt, On the construction of a Jacobi matrix from mixed given data, Lin. Alg. Appl., 28 (1979), 113-115.
doi: 10.1016/0024-3795(79)90124-1.![]() ![]() ![]() |
[16] |
H. Hochstadt and B. Lieberman, An inverse Sturm-Liouville problem with mixed given data, SIAM J. Appl. Math., 34 (1978), 676-680.
doi: 10.1137/0134054.![]() ![]() ![]() |
[17] |
R. O. Hryniv and Y. V. Mykytyuk, Half-inverse spectral problems for Sturm-Liouville operators with singular potentials, Inverse Problems, 20 (2004), 1423-1444.
doi: 10.1088/0266-5611/20/5/006.![]() ![]() ![]() |
[18] |
O. Martinyuk and V. Pivovarchik, On the Hochstadt-Lieberman theorem, Inverse Problems, 26 (2010), 035011.
doi: 10.1088/0266-5611/26/3/035011.![]() ![]() ![]() |
[19] |
J. R. McLaughlin and P. L. Polyakov, On the uniqueness of a spherically symmetric speed of sound from transmission eigenvalues, J. Diff. Eqns., 107 (1994), 351-382.
doi: 10.1006/jdeq.1994.1017.![]() ![]() ![]() |
[20] |
J. R. McLaughlin, P. L. Polyakov and P. E. Sacks, Reconstruction of a spherically symmetric speed of sound, SIAM J. Appl. Math., 54 (1994), 1203-1223.
doi: 10.1137/S0036139992238218.![]() ![]() ![]() |
[21] |
V. G. Papanicolaou and A. V. Doumas, On the discrete one-dimensional inverse transmission eigenvalue problem, Inverse Problems, 27 (2011), 015004.
doi: 10.1088/0266-5611/27/1/015004.![]() ![]() ![]() |
[22] |
G. Wei, The uniqueness for inverse discrete transmission eigenvalue problems, Linear Algebra Appl., 439 (2013), 3699-3712.
doi: 10.1016/j.laa.2013.10.027.![]() ![]() ![]() |
[23] |
Z. Wei and G. Wei, The inverse discrete transmission eigenvalue problem for absorbing media, Inverse Probl. Sci. Eng., 26 (2018), 83-99.
doi: 10.1080/17415977.2017.1309397.![]() ![]() ![]() |
[24] |
X.-C. Xu and C.-F. Yang, On the inverse spectral stability for the transmission eigenvalue problem with finite data, Inverse Problems, 36 (2020), 085006.
doi: 10.1088/1361-6420/ab9590.![]() ![]() ![]() |
[25] |
V. A. Yurko, An inverse problem for operators of a triangular structure, Results Math., 30 (1996), 346-373.
doi: 10.1007/BF03322200.![]() ![]() ![]() |
[26] |
V. A. Yurko, Inverse Spectral Problems for Differential Operators and their Applications, Analytical Methods and Special Functions, Gordon and Breach Science Publishers, Amsterdam, 2000.
![]() ![]() |