-
Previous Article
Quasiconformal model with CNN features for large deformation image registration
- IPI Home
- This Issue
-
Next Article
A spectral target signature for thin surfaces with higher order jump conditions
Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.
Readers can access Online First articles via the “Online First” tab for the selected journal.
Ray transform on Sobolev spaces of symmetric tensor fields, I: Higher order Reshetnyak formulas
1. | TIFR Centre for Applicable Mathematics, Sharada Nagar, Chikkabommasandra, Yelahanka New Town, Bangalore, India |
2. | Sobolev Institute of Mathematics, 4 Koptyug Avenue, Novosibirsk, 630090, Russia |
For an integer $ r\ge0 $, we prove the $ r^{\mathrm{th}} $ order Reshetnyak formula for the ray transform of rank $ m $ symmetric tensor fields on $ {{\mathbb R}}^n $. Roughly speaking, for a tensor field $ f $, the order $ r $ refers to $ L^2 $-integrability of higher order derivatives of the Fourier transform $ \widehat f $ over spheres centered at the origin. Certain differential operators $ A^{(m,r,l)}\ (0\le l\le r) $ on the sphere $ {{\mathbb S}}^{n-1} $ are main ingredients of the formula. The operators are defined by an algorithm that can be applied for any $ r $ although the volume of calculations grows fast with $ r $. The algorithm is realized for small values of $ r $ and Reshetnyak formulas of orders $ 0,1,2 $ are presented in an explicit form.
References:
[1] |
I. M. Gel'fand, M. I. Graev, N. Ya. Vilenkin, Generalized Functions. Vol. 5: Integral Geometry and Representation Theory, Academic Press, New York-London, (1966). |
[2] |
S. Helgason, The Radon Transform, Birkhäuser Boston, Inc., Boston, MA, 1999.
doi: 10.1007/978-1-4757-1463-0. |
[3] |
F. John,
The ultrahyperbolic differential equation with four independent variables, Duke Math. J., 2 (1938), 300-322.
doi: 10.1215/S0012-7094-38-00423-5. |
[4] |
S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Interscience Publishers, New York, London, Sydney, 1963. |
[5] |
V. P. Krishnan, R. Manna, S. K. Sahoo and V. A. Sharafutdinov,
Momentum ray transforms, Inverse Problems and Imaging, 13 (2019), 679-701.
doi: 10.3934/ipi.2019031. |
[6] |
R. Seeley, Complex powers of an elliptic operator, In Proceeding of Symposia in Pure Mathematics, Vol. X, Singular Integrals, American Mathematical Society, Providence, R.I., 1967,288–307. |
[7] |
V. A. Sharafutdinov, Integral geometry of tensor fields, VSP, Utrecht (1994).
doi: 10.1515/9783110900095. |
[8] |
V. A. Sharafutdinov, The Reshetnyak formula and Natterer stability estimates in tensor tomography, Inverse Problems, 33 (2017), 025002, 20 pp.
doi: 10.1088/1361-6420/33/2/025002. |
[9] |
V. A. Sharafutdinov, X-ray transform on Sobolev spaces, Inverse Problems, 37 (2021), 015007, 25 pp.
doi: 10.1088/1361-6420/abb5e0. |
[10] |
V. A. Sharafutdinov,
Radon transform on Sobolev spaces, Siberian Math. J., 62 (2021), 560-580.
|
show all references
References:
[1] |
I. M. Gel'fand, M. I. Graev, N. Ya. Vilenkin, Generalized Functions. Vol. 5: Integral Geometry and Representation Theory, Academic Press, New York-London, (1966). |
[2] |
S. Helgason, The Radon Transform, Birkhäuser Boston, Inc., Boston, MA, 1999.
doi: 10.1007/978-1-4757-1463-0. |
[3] |
F. John,
The ultrahyperbolic differential equation with four independent variables, Duke Math. J., 2 (1938), 300-322.
doi: 10.1215/S0012-7094-38-00423-5. |
[4] |
S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Interscience Publishers, New York, London, Sydney, 1963. |
[5] |
V. P. Krishnan, R. Manna, S. K. Sahoo and V. A. Sharafutdinov,
Momentum ray transforms, Inverse Problems and Imaging, 13 (2019), 679-701.
doi: 10.3934/ipi.2019031. |
[6] |
R. Seeley, Complex powers of an elliptic operator, In Proceeding of Symposia in Pure Mathematics, Vol. X, Singular Integrals, American Mathematical Society, Providence, R.I., 1967,288–307. |
[7] |
V. A. Sharafutdinov, Integral geometry of tensor fields, VSP, Utrecht (1994).
doi: 10.1515/9783110900095. |
[8] |
V. A. Sharafutdinov, The Reshetnyak formula and Natterer stability estimates in tensor tomography, Inverse Problems, 33 (2017), 025002, 20 pp.
doi: 10.1088/1361-6420/33/2/025002. |
[9] |
V. A. Sharafutdinov, X-ray transform on Sobolev spaces, Inverse Problems, 37 (2021), 015007, 25 pp.
doi: 10.1088/1361-6420/abb5e0. |
[10] |
V. A. Sharafutdinov,
Radon transform on Sobolev spaces, Siberian Math. J., 62 (2021), 560-580.
|
[1] |
Venkateswaran P. Krishnan, Plamen Stefanov. A support theorem for the geodesic ray transform of symmetric tensor fields. Inverse Problems and Imaging, 2009, 3 (3) : 453-464. doi: 10.3934/ipi.2009.3.453 |
[2] |
Aleksander Denisiuk. On range condition of the tensor x-ray transform in $ \mathbb R^n $. Inverse Problems and Imaging, 2020, 14 (3) : 423-435. doi: 10.3934/ipi.2020020 |
[3] |
Gareth Ainsworth. The attenuated magnetic ray transform on surfaces. Inverse Problems and Imaging, 2013, 7 (1) : 27-46. doi: 10.3934/ipi.2013.7.27 |
[4] |
Gareth Ainsworth. The magnetic ray transform on Anosov surfaces. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1801-1816. doi: 10.3934/dcds.2015.35.1801 |
[5] |
Michael Anderson, Atsushi Katsuda, Yaroslav Kurylev, Matti Lassas and Michael Taylor. Metric tensor estimates, geometric convergence, and inverse boundary problems. Electronic Research Announcements, 2003, 9: 69-79. |
[6] |
Yang Zhang. Artifacts in the inversion of the broken ray transform in the plane. Inverse Problems and Imaging, 2020, 14 (1) : 1-26. doi: 10.3934/ipi.2019061 |
[7] |
Dan Jane, Gabriel P. Paternain. On the injectivity of the X-ray transform for Anosov thermostats. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 471-487. doi: 10.3934/dcds.2009.24.471 |
[8] |
Yiran Wang. Parametrices for the light ray transform on Minkowski spacetime. Inverse Problems and Imaging, 2018, 12 (1) : 229-237. doi: 10.3934/ipi.2018009 |
[9] |
Gareth Ainsworth, Yernat M. Assylbekov. On the range of the attenuated magnetic ray transform for connections and Higgs fields. Inverse Problems and Imaging, 2015, 9 (2) : 317-335. doi: 10.3934/ipi.2015.9.317 |
[10] |
Siamak RabieniaHaratbar. Support theorem for the Light-Ray transform of vector fields on Minkowski spaces. Inverse Problems and Imaging, 2018, 12 (2) : 293-314. doi: 10.3934/ipi.2018013 |
[11] |
François Rouvière. X-ray transform on Damek-Ricci spaces. Inverse Problems and Imaging, 2010, 4 (4) : 713-720. doi: 10.3934/ipi.2010.4.713 |
[12] |
Jan Boman. Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform. Inverse Problems and Imaging, 2010, 4 (4) : 619-630. doi: 10.3934/ipi.2010.4.619 |
[13] |
Mark Hubenthal. The broken ray transform in $n$ dimensions with flat reflecting boundary. Inverse Problems and Imaging, 2015, 9 (1) : 143-161. doi: 10.3934/ipi.2015.9.143 |
[14] |
James W. Webber, Sean Holman. Microlocal analysis of a spindle transform. Inverse Problems and Imaging, 2019, 13 (2) : 231-261. doi: 10.3934/ipi.2019013 |
[15] |
Ruixue Zhao, Jinyan Fan. Quadratic tensor eigenvalue complementarity problems. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022073 |
[16] |
Tan Bui-Thanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems and Imaging, 2013, 7 (4) : 1139-1155. doi: 10.3934/ipi.2013.7.1139 |
[17] |
Hiroshi Fujiwara, Kamran Sadiq, Alexandru Tamasan. Partial inversion of the 2D attenuated $ X $-ray transform with data on an arc. Inverse Problems and Imaging, 2022, 16 (1) : 215-228. doi: 10.3934/ipi.2021047 |
[18] |
Kaili Zhang, Haibin Chen, Pengfei Zhao. A potential reduction method for tensor complementarity problems. Journal of Industrial and Management Optimization, 2019, 15 (2) : 429-443. doi: 10.3934/jimo.2018049 |
[19] |
Wei-Kang Xun, Shou-Fu Tian, Tian-Tian Zhang. Inverse scattering transform for the integrable nonlocal Lakshmanan-Porsezian-Daniel equation. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021259 |
[20] |
Yuan Li, Shou-Fu Tian. Inverse scattering transform and soliton solutions of an integrable nonlocal Hirota equation. Communications on Pure and Applied Analysis, 2022, 21 (1) : 293-313. doi: 10.3934/cpaa.2021178 |
2020 Impact Factor: 1.639
Tools
Metrics
Other articles
by authors
[Back to Top]