doi: 10.3934/ipi.2022011
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Reconstruction of singularities in two-dimensional quasi-linear biharmonic operator

Research Unit of Mathematical Sciences, P.O. BOX 3000, FIN-90014 University of Oulu, Finland

*Corresponding author: Jaakko Kultima

Received  September 2021 Revised  January 2022 Early access March 2022

The inverse backscattering Born approximation for two-dimensional quasi-linear biharmonic operator is studied. We prove the precise formulae for the first nonlinear term of the Born sequence. We prove also that all other terms in this sequence are $ H^t- $functions for any $ t<1 $. These formulae and estimates allow us to conclude that all main singularities of a certain combination of unknown coefficients, in particular, $ L^p- $singularities for $ 2\le p<\infty $, can be uniquely reconstructed using the inverse backscattering Born approximation. In addition, it is shown that the jumps ($ L^{\infty}- $singularities) over smooth curves are uniquely determined by the backscattering data and can be recovered from the Born approximation. We present a numerical method for the reconstruction of these singularities.

Citation: Jaakko Kultima, Valery Serov. Reconstruction of singularities in two-dimensional quasi-linear biharmonic operator. Inverse Problems and Imaging, doi: 10.3934/ipi.2022011
References:
[1]

G. Fotopoulos and M. Harju, Inverse scattering with fixed observation angle data in 2D, Inv. Prob. Sci. Eng., 25 (2017), 1492-1507.  doi: 10.1080/17415977.2016.1267170.

[2]

G. FotopoulosM. Harju and V. Serov, Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D, Inverse Probl. Imaging, 7 (2013), 183-197.  doi: 10.3934/ipi.2013.7.183.

[3]

G. Fotopoulos and V. Serov, Inverse fixed energy scattering problem for the two-dimensional nonlinear Schrödinger operator, Inv. Prob. Sci. Eng., 24 (2016), 692-710.  doi: 10.1080/17415977.2015.1055263.

[4]

F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, Springer-Verlag, Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-12245-3.

[5]

P. Hajłasz, Sobolev spaces on an arbitrary metric space, Potential Anal., 5 (1996), 403-415. 

[6]

M. HarjuJ. KultimaV. Serov and T. Tyni, Two-dimensional inverse scattering for quasi-linear biharmonic operator, Inverse Probl. Imaging, 15 (2021), 1015-1033.  doi: 10.3934/ipi.2021026.

[7]

V. Serov, Inverse fixed angle scattering and backscattering problems in two dimensions, Inverse Problems, 24 (2008), 065002, 14 pp. doi: 10.1088/0266-5611/24/6/065002.

[8]

V. Serov, An inverse Born approximation for the general nonlinear Schrödinger operator on the line, J. Phys. A, 42 (2009), 332002, 7 pp. doi: 10.1088/1751-8113/42/33/332002.

[9]

V. Serov, M. Harju and G. Fotopoulos, Direct and inverse scattering for nonlinear Schrödinger equation in 2D, J. Math. Phys., 53 (2012), 123522, 16 pp. doi: 10.1063/1.4769825.

[10]

V. Serov and J. Sandhu, Inverse backscattering problem for the generalized nonlinear Schrödinger operator in two dimensions, J. Phys. A, 43 (2010), 325206, 15 pp. doi: 10.1088/1751-8113/43/32/325206.

[11]

T. Tyni, Numerical results for Saito's uniqueness theorem in inverse scattering theory, Inverse Problems, 36 (2020), 065002, 14 pp. doi: 10.1088/1361-6420/ab7d2d.

[12]

T. Tyni and M. Harju, Inverse backscattering problem for perturbations of biharmonic operator, Inverse Problems, 33 (2017), 105002, 20 pp. doi: 10.1088/1361-6420/aa873e.

[13]

T. Tyni and V. Serov, Scattering problems for perturbations of the multidimensional biharmonic operator, Inverse Probl. Imaging, 12 (2018), 205-227.  doi: 10.3934/ipi.2018008.

[14]

T. Tyni and V. Serov, Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line, Inverse Probl. Imaging, 13 (2019), 159-175.  doi: 10.3934/ipi.2019009.

[15]

E. Zeidler, Applied Functional Analysis, Springer-Verlag, New York, 1995.

show all references

References:
[1]

G. Fotopoulos and M. Harju, Inverse scattering with fixed observation angle data in 2D, Inv. Prob. Sci. Eng., 25 (2017), 1492-1507.  doi: 10.1080/17415977.2016.1267170.

[2]

G. FotopoulosM. Harju and V. Serov, Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D, Inverse Probl. Imaging, 7 (2013), 183-197.  doi: 10.3934/ipi.2013.7.183.

[3]

G. Fotopoulos and V. Serov, Inverse fixed energy scattering problem for the two-dimensional nonlinear Schrödinger operator, Inv. Prob. Sci. Eng., 24 (2016), 692-710.  doi: 10.1080/17415977.2015.1055263.

[4]

F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, Springer-Verlag, Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-12245-3.

[5]

P. Hajłasz, Sobolev spaces on an arbitrary metric space, Potential Anal., 5 (1996), 403-415. 

[6]

M. HarjuJ. KultimaV. Serov and T. Tyni, Two-dimensional inverse scattering for quasi-linear biharmonic operator, Inverse Probl. Imaging, 15 (2021), 1015-1033.  doi: 10.3934/ipi.2021026.

[7]

V. Serov, Inverse fixed angle scattering and backscattering problems in two dimensions, Inverse Problems, 24 (2008), 065002, 14 pp. doi: 10.1088/0266-5611/24/6/065002.

[8]

V. Serov, An inverse Born approximation for the general nonlinear Schrödinger operator on the line, J. Phys. A, 42 (2009), 332002, 7 pp. doi: 10.1088/1751-8113/42/33/332002.

[9]

V. Serov, M. Harju and G. Fotopoulos, Direct and inverse scattering for nonlinear Schrödinger equation in 2D, J. Math. Phys., 53 (2012), 123522, 16 pp. doi: 10.1063/1.4769825.

[10]

V. Serov and J. Sandhu, Inverse backscattering problem for the generalized nonlinear Schrödinger operator in two dimensions, J. Phys. A, 43 (2010), 325206, 15 pp. doi: 10.1088/1751-8113/43/32/325206.

[11]

T. Tyni, Numerical results for Saito's uniqueness theorem in inverse scattering theory, Inverse Problems, 36 (2020), 065002, 14 pp. doi: 10.1088/1361-6420/ab7d2d.

[12]

T. Tyni and M. Harju, Inverse backscattering problem for perturbations of biharmonic operator, Inverse Problems, 33 (2017), 105002, 20 pp. doi: 10.1088/1361-6420/aa873e.

[13]

T. Tyni and V. Serov, Scattering problems for perturbations of the multidimensional biharmonic operator, Inverse Probl. Imaging, 12 (2018), 205-227.  doi: 10.3934/ipi.2018008.

[14]

T. Tyni and V. Serov, Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line, Inverse Probl. Imaging, 13 (2019), 159-175.  doi: 10.3934/ipi.2019009.

[15]

E. Zeidler, Applied Functional Analysis, Springer-Verlag, New York, 1995.

Figure 1.  Combination $ \beta $ consisting three disjoint parts is depicted on the left hand side. In the middle we have the TSVD reconstruction of the function $ \beta_B^b $ and on the right the difference $ \beta - \beta_B^b $
Figure 2.  The second example includes different types of non-linearities compared with the first example. In particular, here the function $ V $ is independent on $ |u| $ and therefore this example highlights that the linear potentials are included in our considerations. In the middle we have the TSVD reconstruction of function $ \beta_B^b $ and on the right the difference $ \beta - \beta_B^b $
Figure 3.  In the third example, only the first order potential $ \overrightarrow{W} $ is presented. The unknown combination $ \beta = -\frac{1}{2}\nabla\cdot \overrightarrow{W} $ (on the left-hand side) in this case has jump-discontinuities over smooth boundaries and as Corollary 1 suggests, such jump-discontinuities of $ \beta $ can be recovered, by using the backscattering Born approximation. In the middle we have the TSVD-reconstruction of function $ \beta^b_B $ and on the right-hand side the difference $ \beta - \beta_B^b $
[1]

Pablo Ochoa. Approximation schemes for non-linear second order equations on the Heisenberg group. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1841-1863. doi: 10.3934/cpaa.2015.14.1841

[2]

Kurt Falk, Marc Kesseböhmer, Tobias Henrik Oertel-Jäger, Jens D. M. Rademacher, Tony Samuel. Preface: Diffusion on fractals and non-linear dynamics. Discrete and Continuous Dynamical Systems - S, 2017, 10 (2) : i-iv. doi: 10.3934/dcdss.201702i

[3]

Dmitry Dolgopyat. Bouncing balls in non-linear potentials. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 165-182. doi: 10.3934/dcds.2008.22.165

[4]

Dorin Ervin Dutkay and Palle E. T. Jorgensen. Wavelet constructions in non-linear dynamics. Electronic Research Announcements, 2005, 11: 21-33.

[5]

Armin Lechleiter. Explicit characterization of the support of non-linear inclusions. Inverse Problems and Imaging, 2011, 5 (3) : 675-694. doi: 10.3934/ipi.2011.5.675

[6]

Denis Serre. Non-linear electromagnetism and special relativity. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435

[7]

Feng-Yu Wang. Exponential convergence of non-linear monotone SPDEs. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5239-5253. doi: 10.3934/dcds.2015.35.5239

[8]

Anugu Sumith Reddy, Amit Apte. Stability of non-linear filter for deterministic dynamics. Foundations of Data Science, 2021, 3 (3) : 647-675. doi: 10.3934/fods.2021025

[9]

Ahmad El Hajj, Aya Oussaily. Continuous solution for a non-linear eikonal system. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3795-3823. doi: 10.3934/cpaa.2021131

[10]

Tommi Brander, Joonas Ilmavirta, Manas Kar. Superconductive and insulating inclusions for linear and non-linear conductivity equations. Inverse Problems and Imaging, 2018, 12 (1) : 91-123. doi: 10.3934/ipi.2018004

[11]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424

[12]

Eugenio Aulisa, Akif Ibragimov, Emine Yasemen Kaya-Cekin. Stability analysis of non-linear plates coupled with Darcy flows. Evolution Equations and Control Theory, 2013, 2 (2) : 193-232. doi: 10.3934/eect.2013.2.193

[13]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[14]

Olusola Kolebaje, Ebenezer Bonyah, Lateef Mustapha. The first integral method for two fractional non-linear biological models. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 487-502. doi: 10.3934/dcdss.2019032

[15]

Tarek Saanouni. Non-linear bi-harmonic Choquard equations. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5033-5057. doi: 10.3934/cpaa.2020221

[16]

Faustino Sánchez-Garduño, Philip K. Maini, Judith Pérez-Velázquez. A non-linear degenerate equation for direct aggregation and traveling wave dynamics. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 455-487. doi: 10.3934/dcdsb.2010.13.455

[17]

T. Gilbert, J. R. Dorfman. On the parametric dependences of a class of non-linear singular maps. Discrete and Continuous Dynamical Systems - B, 2004, 4 (2) : 391-406. doi: 10.3934/dcdsb.2004.4.391

[18]

Yunfei Lv, Yongzhen Pei, Rong Yuan. On a non-linear size-structured population model. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3111-3133. doi: 10.3934/dcdsb.2020053

[19]

Christoph Walker. Age-dependent equations with non-linear diffusion. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 691-712. doi: 10.3934/dcds.2010.26.691

[20]

José M. Amigó, Isabelle Catto, Ángel Giménez, José Valero. Attractors for a non-linear parabolic equation modelling suspension flows. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 205-231. doi: 10.3934/dcdsb.2009.11.205

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (146)
  • HTML views (77)
  • Cited by (0)

Other articles
by authors

[Back to Top]