doi: 10.3934/ipi.2022012
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Recovering a bounded elastic body by electromagnetic far-field measurements

1. 

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China

2. 

LSEC and Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China

3. 

School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China

*Corresponding author: Jiaqing Yang

Received  October 2021 Revised  February 2022 Early access March 2022

Fund Project: J. Yang is supported in part by the NNSF of China grant No. 12122114 and The Young Talent Support Plan of Xi'an Jiaotong University

This paper is concerned with the scattering of a time-harmonic electromagnetic wave by a three-dimensional elastic body. The general transmission conditions are considered to model the interaction between the electromagnetic field and the elastic body on the interface by Voigt's model. The existence of a unique solution is first proved in an appropriate Sobolev space by employing the variational method with the classical Fredholm alternative. The inverse problem is then investigated to recover the elastic body by the scattered wave-field data. It is shown that the shape and location of the body is uniquely determined by the fixed energy magnetic (or electric) far-field measurements corresponding to incident plane waves with all polarizations.

Citation: Tielei Zhu, Jiaqing Yang, Bo Zhang. Recovering a bounded elastic body by electromagnetic far-field measurements. Inverse Problems and Imaging, doi: 10.3934/ipi.2022012
References:
[1]

A. BernardoA. Marquez and S. Meddahi, Analysis of an interaction problem between an electromagnetic field and an elastic body, Int. J. Numer. Anal. Model., 7 (2010), 749-765. 

[2]

F. Cakoni and G. C. Hsiao, Mathematical model of the interaction problem between electromagnetic field and elastic body, Acoustics, Mechanics, and the Related Topics of Mathematical Analysis, (eds. A. Wirgin), World Scientific, (2002), 48–54. doi: 10.1142/9789812704405_0009.

[3]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 3$^{rd}$ edition, Springer, New York, 2013. doi: 10.1007/978-1-4614-4942-3.

[4]

G. N. GaticaG. C. Hsiao and S. Meddahi, A coupled mixed finite element method for the interaction problem between an electromagnetic field and an elastic body, SIAM J. Numer. Anal., 48 (2010), 1338-1368.  doi: 10.1137/090754212.

[5]

P. Hähner, On the uniqueness of the shape of a penetrable, anisotropic obstacle, J. Comput. Appl. Math., 116 (2010), 167-180.  doi: 10.1016/S0377-0427(99)00323-4.

[6]

G. C. HsiaoR. E. Kleinman and G. F. Roach, Weak solutions of fluid-solid interaction problems, Math. Nachr., 218 (2000), 139-163.  doi: 10.1002/1522-2616(200010)218:1<139::AID-MANA139>3.0.CO;2-S.

[7] A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford University Press, Oxford, 2008.  doi: 10.1093/acprof:oso/9780199213535.001.0001.
[8]

A. Kirsch and A. Ruiz, The factorization method for an inverse fluid-solid interaction scattering problem, Inverse Probl. Imag., 6 (2012), 681-695.  doi: 10.3934/ipi.2012.6.681.

[9]

C. J. Luke and P. A. Martin, Fluid-solid interaction: Acoustic scattering by a smooth elastic obstacle, SIAM J. Appl. Math., 55 (1995), 904-922.  doi: 10.1137/S0036139993259027.

[10] P. Monk, Finite Element Method for Maxwell's Equations, Oxford University Press, New York, 2003.  doi: 10.1093/acprof:oso/9780198508885.001.0001.
[11]

P. Monk and V. Selgas, An inverse fluid-solid interaction problem, Inverse Probl. Imag., 3 (2009), 173-198.  doi: 10.3934/ipi.2009.3.173.

[12]

D. NatroshviliS. Kharibegashvili and Z. Tediashvili, Direct and inverse fluid structure interaction problems, Rend. Mat. Appl., 20 (2000), 57-92. 

[13]

F. Qu, J. Yang and B. Zhang, Recovering an elastic obstacle containing embedded objects by the acoustic far-field measurements, Inverse Problems, 34 (2018), 015002, 8 pp. doi: 10.1088/1361-6420/aa9c26.

[14]

J. YangB. Zhang and H. Zhang, Uniqueness in inverse acoustic and electromagnetic scattering by penetrable obstacle with embedded objects, J. Differ. Equations, 265 (2018), 6352-6383.  doi: 10.1016/j.jde.2018.07.033.

show all references

References:
[1]

A. BernardoA. Marquez and S. Meddahi, Analysis of an interaction problem between an electromagnetic field and an elastic body, Int. J. Numer. Anal. Model., 7 (2010), 749-765. 

[2]

F. Cakoni and G. C. Hsiao, Mathematical model of the interaction problem between electromagnetic field and elastic body, Acoustics, Mechanics, and the Related Topics of Mathematical Analysis, (eds. A. Wirgin), World Scientific, (2002), 48–54. doi: 10.1142/9789812704405_0009.

[3]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 3$^{rd}$ edition, Springer, New York, 2013. doi: 10.1007/978-1-4614-4942-3.

[4]

G. N. GaticaG. C. Hsiao and S. Meddahi, A coupled mixed finite element method for the interaction problem between an electromagnetic field and an elastic body, SIAM J. Numer. Anal., 48 (2010), 1338-1368.  doi: 10.1137/090754212.

[5]

P. Hähner, On the uniqueness of the shape of a penetrable, anisotropic obstacle, J. Comput. Appl. Math., 116 (2010), 167-180.  doi: 10.1016/S0377-0427(99)00323-4.

[6]

G. C. HsiaoR. E. Kleinman and G. F. Roach, Weak solutions of fluid-solid interaction problems, Math. Nachr., 218 (2000), 139-163.  doi: 10.1002/1522-2616(200010)218:1<139::AID-MANA139>3.0.CO;2-S.

[7] A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford University Press, Oxford, 2008.  doi: 10.1093/acprof:oso/9780199213535.001.0001.
[8]

A. Kirsch and A. Ruiz, The factorization method for an inverse fluid-solid interaction scattering problem, Inverse Probl. Imag., 6 (2012), 681-695.  doi: 10.3934/ipi.2012.6.681.

[9]

C. J. Luke and P. A. Martin, Fluid-solid interaction: Acoustic scattering by a smooth elastic obstacle, SIAM J. Appl. Math., 55 (1995), 904-922.  doi: 10.1137/S0036139993259027.

[10] P. Monk, Finite Element Method for Maxwell's Equations, Oxford University Press, New York, 2003.  doi: 10.1093/acprof:oso/9780198508885.001.0001.
[11]

P. Monk and V. Selgas, An inverse fluid-solid interaction problem, Inverse Probl. Imag., 3 (2009), 173-198.  doi: 10.3934/ipi.2009.3.173.

[12]

D. NatroshviliS. Kharibegashvili and Z. Tediashvili, Direct and inverse fluid structure interaction problems, Rend. Mat. Appl., 20 (2000), 57-92. 

[13]

F. Qu, J. Yang and B. Zhang, Recovering an elastic obstacle containing embedded objects by the acoustic far-field measurements, Inverse Problems, 34 (2018), 015002, 8 pp. doi: 10.1088/1361-6420/aa9c26.

[14]

J. YangB. Zhang and H. Zhang, Uniqueness in inverse acoustic and electromagnetic scattering by penetrable obstacle with embedded objects, J. Differ. Equations, 265 (2018), 6352-6383.  doi: 10.1016/j.jde.2018.07.033.

Figure 1.  Interaction between electromagnetic wave and a bounded elastic body
Figure 2.  Two different elastic bodies
[1]

Annalena Albicker, Roland Griesmaier. Monotonicity in inverse scattering for Maxwell's equations. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022032

[2]

Gaocheng Yue, Chengkui Zhong. On the global well-posedness to the 3-D Navier-Stokes-Maxwell system. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5817-5835. doi: 10.3934/dcds.2016056

[3]

Jishan Fan, Yueling Jia. Local well-posedness of the full compressible Navier-Stokes-Maxwell system with vacuum. Kinetic and Related Models, 2018, 11 (1) : 97-106. doi: 10.3934/krm.2018005

[4]

Daoyuan Fang, Ruizhao Zi. On the well-posedness of inhomogeneous hyperdissipative Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3517-3541. doi: 10.3934/dcds.2013.33.3517

[5]

Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations and Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195

[6]

Matthias Hieber, Sylvie Monniaux. Well-posedness results for the Navier-Stokes equations in the rotational framework. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5143-5151. doi: 10.3934/dcds.2013.33.5143

[7]

Magdalena Czubak, Nina Pikula. Low regularity well-posedness for the 2D Maxwell-Klein-Gordon equation in the Coulomb gauge. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1669-1683. doi: 10.3934/cpaa.2014.13.1669

[8]

M. Keel, Tristan Roy, Terence Tao. Global well-posedness of the Maxwell-Klein-Gordon equation below the energy norm. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 573-621. doi: 10.3934/dcds.2011.30.573

[9]

Yuan Xu, Fujun Zhou, Weihua Gong. Global Well-posedness and Optimal Decay Rate of the Quasi-static Incompressible Navier–Stokes–Fourier–Maxwell–Poisson System. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1537-1565. doi: 10.3934/cpaa.2022028

[10]

Quanrong Li, Shijin Ding. Global well-posedness of the Navier-Stokes equations with Navier-slip boundary conditions in a strip domain. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3561-3581. doi: 10.3934/cpaa.2021121

[11]

Hiroyuki Hirayama, Mamoru Okamoto. Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure and Applied Analysis, 2016, 15 (3) : 831-851. doi: 10.3934/cpaa.2016.15.831

[12]

Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563

[13]

Hartmut Pecher. Local well-posedness for the Maxwell-Dirac system in temporal gauge. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 3065-3076. doi: 10.3934/dcds.2022008

[14]

Dan-Andrei Geba, Kenji Nakanishi, Sarada G. Rajeev. Global well-posedness and scattering for Skyrme wave maps. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1923-1933. doi: 10.3934/cpaa.2012.11.1923

[15]

Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148

[16]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[17]

Bin Han, Changhua Wei. Global well-posedness for inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6921-6941. doi: 10.3934/dcds.2016101

[18]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure and Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

[19]

Keyan Wang, Yao Xiao. Local well-posedness for Navier-Stokes equations with a class of ill-prepared initial data. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2987-3011. doi: 10.3934/dcds.2020158

[20]

Weimin Peng, Yi Zhou. Global well-posedness of axisymmetric Navier-Stokes equations with one slow variable. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3845-3856. doi: 10.3934/dcds.2016.36.3845

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (155)
  • HTML views (87)
  • Cited by (0)

Other articles
by authors

[Back to Top]