• Previous Article
    Robust region-based active contour models via local statistical similarity and local similarity factor for intensity inhomogeneity and high noise image segmentation
  • IPI Home
  • This Issue
  • Next Article
    Recovering a bounded elastic body by electromagnetic far-field measurements
October  2022, 16(5): 1085-1111. doi: 10.3934/ipi.2022013

Photoacoustic tomography in attenuating media with partial data

Department of Mathematics, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile

Received  October 2021 Revised  February 2022 Published  October 2022 Early access  March 2022

The attenuation of ultrasound waves in photoacoustic and thermoacoustic imaging presents an important drawback in the applicability of these modalities. This issue has been addressed previously in the applied and theoretical literature, and some advances have been made on the topic. In particular, stability inequalities have been proposed for the inverse problem of initial source recovery with partial observations under the assumption of unique determination of the initial pressure. The main goal of this work is to fill this gap, this is, we prove the uniqueness property for the inverse problem and establish the associated stability estimates as well. The problem of reconstructing the initial condition of acoustic waves in the complete-data setting is revisited and a new Neumann series reconstruction formula is obtained for the case of partial observations in a semi-bounded geometry. A numerical simulation is also included to test the method.

Citation: Benjamin Palacios. Photoacoustic tomography in attenuating media with partial data. Inverse Problems and Imaging, 2022, 16 (5) : 1085-1111. doi: 10.3934/ipi.2022013
References:
[1]

S. Acosta and C. Montalto, Multiwave imaging in an enclosure with variable wave speed, Inverse Problems, 31 (2015), 065009, 12 pp. doi: 10.1088/0266-5611/31/6/065009.

[2]

S. Acosta and B. Palacios, Thermoacoustic tomography for an integro-differential wave equation modeling attenuation, J. Differential Equations, 264 (2018), 1984-2010.  doi: 10.1016/j.jde.2017.10.012.

[3]

C. BardosG. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.  doi: 10.1137/0330055.

[4]

O. Chervova and L. Oksanen, Time reversal method with stabilizing boundary conditions for photoacoustic tomography, Inverse Problems, 32 (2016), 125004, 16 pp. doi: 10.1088/0266-5611/32/12/125004.

[5]

L. C. Evans, Partial Differential Equations, Vol 19, American Mathematical Soc., 1998.

[6]

D. FinchS. K. Patch and Ra kesh, Determining a function from its mean values over a family of spheres, SIAM J. Math. Anal., 35 (2004), 1213-1240.  doi: 10.1137/S0036141002417814.

[7]

X. Fu, Stabilization of hyperbolic equations with mixed boundary conditions, Math. Control Relat. Fields, 5 (2015), 761-780.  doi: 10.3934/mcrf.2015.5.761.

[8]

M. Haltmeier and L. V. Nguyen, Reconstruction algorithms for photoacoustic tomography in heterogeneous damping media, J. Math. Imaging Vision, 61 (2019), 1007-1021.  doi: 10.1007/s10851-019-00879-y.

[9]

A. Homan, Multi-wave imaging in attenuating media, Inverse Probl. Imaging, 7 (2013), 1235-1250.  doi: 10.3934/ipi.2013.7.1235.

[10]

L. Hörmander, The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis, Moscow, 1986.

[11]

L. Hörmander, The Analysis of Linear Partial Differential Operators Ⅳ: Fourier Integral Operators, Springer, 2009.

[12]

M. Ikawa, On the mixed problem for hyperbolic equations of second order with the Neumann boundary condition, Osaka Math. J., 7 (1970), 203-223. 

[13]

Q. H. Liu and J. Tao, The perfectly matched layer for acoustic waves in absorptive media, J. Acoust. Soc. Am., 102 (1997), 2072-2082.  doi: 10.1121/1.419657.

[14]

L. V. Nguyen and L. A. Kunyansky, A dissipative time reversal technique for photoacoustic tomography in a cavity, SIAM J. Imaging Sci., 9 (2016), 748-769.  doi: 10.1137/15M1049683.

[15]

B. Palacios, Reconstruction for multi-wave imaging in attenuating media with large damping coefficient, Inverse Problems, 32 (2016), 125008, 15 pp. doi: 10.1088/0266-5611/32/12/125008.

[16]

J. QianP. StefanovG. Uhlmann and H. Zhao, An efficient Neumann series-based algorithm for thermoacoustic and photoacoustic tomography with variable sound speed, SIAM J. Imaging Sci., 4 (2011), 850-883.  doi: 10.1137/100817280.

[17]

P. Stefanov, Conditionally stable unique continuation and applications to thermoacoustic tomography, Math. Eng., 1 (2019), 789-799.  doi: 10.3934/mine.2019.4.789.

[18]

P. Stefanov and G. Uhlmann, Thermoacoustic tomography with variable sound speed, Inverse Problems, 25 (2009), 075011, 16 pp. doi: 10.1088/0266-5611/25/7/075011.

[19]

P. Stefanov and G. Uhlmann, Thermoacoustic tomography arising in brain imaging, Inverse Problems, 27 (2011), 045004 26 pp. doi: 10.1088/0266-5611/27/4/045004.

[20]

P. Stefanov and G. Uhlmann, Multi-wave methods via ultrasound, In Inverse Problems and Applications, Inside Out II, MSRI Publications, 60 (2013), 271–323.

[21]

P. Stefanov and G. Uhlmann, Recovery of a source term or a speed with one measurement and applications, Trans. Amer. Math. Soc., 365 (2013), 5737-5758.  doi: 10.1090/S0002-9947-2013-05703-0.

[22]

P. Stefanov and Y. Yang, Multiwave tomography in a closed domain: Averaged sharp time reversal, Inverse Problems, 31 (2015), 065007, 23 pp. doi: 10.1088/0266-5611/31/6/065007.

[23]

D. Tataru, On the regularity of boundary traces for the wave equation, Ann. Sc. Norm. Super. Pisa Cl. Sci., 26 (1998), 185-206. 

[24]

D. Tataru, Unique continuation for operators with partially analytic coefficients, J. Math. Pures Appl., 78 (1999), 505-521.  doi: 10.1016/S0021-7824(99)00016-1.

show all references

References:
[1]

S. Acosta and C. Montalto, Multiwave imaging in an enclosure with variable wave speed, Inverse Problems, 31 (2015), 065009, 12 pp. doi: 10.1088/0266-5611/31/6/065009.

[2]

S. Acosta and B. Palacios, Thermoacoustic tomography for an integro-differential wave equation modeling attenuation, J. Differential Equations, 264 (2018), 1984-2010.  doi: 10.1016/j.jde.2017.10.012.

[3]

C. BardosG. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.  doi: 10.1137/0330055.

[4]

O. Chervova and L. Oksanen, Time reversal method with stabilizing boundary conditions for photoacoustic tomography, Inverse Problems, 32 (2016), 125004, 16 pp. doi: 10.1088/0266-5611/32/12/125004.

[5]

L. C. Evans, Partial Differential Equations, Vol 19, American Mathematical Soc., 1998.

[6]

D. FinchS. K. Patch and Ra kesh, Determining a function from its mean values over a family of spheres, SIAM J. Math. Anal., 35 (2004), 1213-1240.  doi: 10.1137/S0036141002417814.

[7]

X. Fu, Stabilization of hyperbolic equations with mixed boundary conditions, Math. Control Relat. Fields, 5 (2015), 761-780.  doi: 10.3934/mcrf.2015.5.761.

[8]

M. Haltmeier and L. V. Nguyen, Reconstruction algorithms for photoacoustic tomography in heterogeneous damping media, J. Math. Imaging Vision, 61 (2019), 1007-1021.  doi: 10.1007/s10851-019-00879-y.

[9]

A. Homan, Multi-wave imaging in attenuating media, Inverse Probl. Imaging, 7 (2013), 1235-1250.  doi: 10.3934/ipi.2013.7.1235.

[10]

L. Hörmander, The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis, Moscow, 1986.

[11]

L. Hörmander, The Analysis of Linear Partial Differential Operators Ⅳ: Fourier Integral Operators, Springer, 2009.

[12]

M. Ikawa, On the mixed problem for hyperbolic equations of second order with the Neumann boundary condition, Osaka Math. J., 7 (1970), 203-223. 

[13]

Q. H. Liu and J. Tao, The perfectly matched layer for acoustic waves in absorptive media, J. Acoust. Soc. Am., 102 (1997), 2072-2082.  doi: 10.1121/1.419657.

[14]

L. V. Nguyen and L. A. Kunyansky, A dissipative time reversal technique for photoacoustic tomography in a cavity, SIAM J. Imaging Sci., 9 (2016), 748-769.  doi: 10.1137/15M1049683.

[15]

B. Palacios, Reconstruction for multi-wave imaging in attenuating media with large damping coefficient, Inverse Problems, 32 (2016), 125008, 15 pp. doi: 10.1088/0266-5611/32/12/125008.

[16]

J. QianP. StefanovG. Uhlmann and H. Zhao, An efficient Neumann series-based algorithm for thermoacoustic and photoacoustic tomography with variable sound speed, SIAM J. Imaging Sci., 4 (2011), 850-883.  doi: 10.1137/100817280.

[17]

P. Stefanov, Conditionally stable unique continuation and applications to thermoacoustic tomography, Math. Eng., 1 (2019), 789-799.  doi: 10.3934/mine.2019.4.789.

[18]

P. Stefanov and G. Uhlmann, Thermoacoustic tomography with variable sound speed, Inverse Problems, 25 (2009), 075011, 16 pp. doi: 10.1088/0266-5611/25/7/075011.

[19]

P. Stefanov and G. Uhlmann, Thermoacoustic tomography arising in brain imaging, Inverse Problems, 27 (2011), 045004 26 pp. doi: 10.1088/0266-5611/27/4/045004.

[20]

P. Stefanov and G. Uhlmann, Multi-wave methods via ultrasound, In Inverse Problems and Applications, Inside Out II, MSRI Publications, 60 (2013), 271–323.

[21]

P. Stefanov and G. Uhlmann, Recovery of a source term or a speed with one measurement and applications, Trans. Amer. Math. Soc., 365 (2013), 5737-5758.  doi: 10.1090/S0002-9947-2013-05703-0.

[22]

P. Stefanov and Y. Yang, Multiwave tomography in a closed domain: Averaged sharp time reversal, Inverse Problems, 31 (2015), 065007, 23 pp. doi: 10.1088/0266-5611/31/6/065007.

[23]

D. Tataru, On the regularity of boundary traces for the wave equation, Ann. Sc. Norm. Super. Pisa Cl. Sci., 26 (1998), 185-206. 

[24]

D. Tataru, Unique continuation for operators with partially analytic coefficients, J. Math. Pures Appl., 78 (1999), 505-521.  doi: 10.1016/S0021-7824(99)00016-1.

Figure 1.  Sound speed as in (21)
Figure 2.  Initial condition $ f $ for simulation 1 (left) and 2 (right). The gray line surrounding the domain represents the support of $ \lambda $, hence, the observation region
Figure 3.  Reconstruction of initial condition for the first simulation: back-projection (top left) and 20 terms of Neumann series (top right), both with pixel values on the interval $ [-0.2, 1] $. Bottom: cross section at $ y = 0 $. The gray line, the black solid line and the gray dash-dotted line correspond, respectively, to the true initial source, the Neumann series approximation and the back-projection approximations
Figure 4.  Reconstruction of initial condition for the second simulation: back-projection (left) and 60 terms of the Neumann series (right), both with pixel values on the interval $ [-0.2, 1] $. Middle and bottom: cross section at $ y = 0.4 $ and $ y = -0.4 $ respectively. The gray line, the black solid line and the gray dash-dotted line correspond, respectively, to the true initial source, the Neumann series approximation and the back-projection approximations
[1]

Frank Natterer. Incomplete data problems in wave equation imaging. Inverse Problems and Imaging, 2010, 4 (4) : 685-691. doi: 10.3934/ipi.2010.4.685

[2]

Vesselin Petkov. Location of eigenvalues for the wave equation with dissipative boundary conditions. Inverse Problems and Imaging, 2016, 10 (4) : 1111-1139. doi: 10.3934/ipi.2016034

[3]

María Ángeles García-Ferrero, Angkana Rüland, Wiktoria Zatoń. Runge approximation and stability improvement for a partial data Calderón problem for the acoustic Helmholtz equation. Inverse Problems and Imaging, 2022, 16 (1) : 251-281. doi: 10.3934/ipi.2021049

[4]

Victor Isakov, Jenn-Nan Wang. Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to-Neumann map. Inverse Problems and Imaging, 2014, 8 (4) : 1139-1150. doi: 10.3934/ipi.2014.8.1139

[5]

Alexandre Nolasco de Carvalho, Jan W. Cholewa, Tomasz Dlotko. Damped wave equations with fast growing dissipative nonlinearities. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1147-1165. doi: 10.3934/dcds.2009.24.1147

[6]

Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations and Control Theory, 2022, 11 (3) : 635-648. doi: 10.3934/eect.2021019

[7]

V. Pata, Sergey Zelik. A remark on the damped wave equation. Communications on Pure and Applied Analysis, 2006, 5 (3) : 611-616. doi: 10.3934/cpaa.2006.5.611

[8]

Umberto De Maio, Akamabadath K. Nandakumaran, Carmen Perugia. Exact internal controllability for the wave equation in a domain with oscillating boundary with Neumann boundary condition. Evolution Equations and Control Theory, 2015, 4 (3) : 325-346. doi: 10.3934/eect.2015.4.325

[9]

G. Gentile, V. Mastropietro. Convergence of Lindstedt series for the non linear wave equation. Communications on Pure and Applied Analysis, 2004, 3 (3) : 509-514. doi: 10.3934/cpaa.2004.3.509

[10]

Masahiro Ikeda, Takahisa Inui, Mamoru Okamoto, Yuta Wakasugi. $ L^p $-$ L^q $ estimates for the damped wave equation and the critical exponent for the nonlinear problem with slowly decaying data. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1967-2008. doi: 10.3934/cpaa.2019090

[11]

David Rossmanith, Ashok Puri. Recasting a Brinkman-based acoustic model as the damped Burgers equation. Evolution Equations and Control Theory, 2016, 5 (3) : 463-474. doi: 10.3934/eect.2016014

[12]

Heping Dong, Deyue Zhang, Yukun Guo. A reference ball based iterative algorithm for imaging acoustic obstacle from phaseless far-field data. Inverse Problems and Imaging, 2019, 13 (1) : 177-195. doi: 10.3934/ipi.2019010

[13]

Heping Dong, Deyue Zhang, Yingwei Chi. An iterative scheme for imaging acoustic obstacle from phaseless total-field data. Inverse Problems and Imaging, 2022, 16 (4) : 925-942. doi: 10.3934/ipi.2022005

[14]

Francis J. Chung. Partial data for the Neumann-Dirichlet magnetic Schrödinger inverse problem. Inverse Problems and Imaging, 2014, 8 (4) : 959-989. doi: 10.3934/ipi.2014.8.959

[15]

Yanni Guo, Genqi Xu, Yansha Guo. Stabilization of the wave equation with interior input delay and mixed Neumann-Dirichlet boundary. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2491-2507. doi: 10.3934/dcdsb.2016057

[16]

Martin Gugat, Günter Leugering, Ke Wang. Neumann boundary feedback stabilization for a nonlinear wave equation: A strict $H^2$-lyapunov function. Mathematical Control and Related Fields, 2017, 7 (3) : 419-448. doi: 10.3934/mcrf.2017015

[17]

Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete and Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389

[18]

Linglong Du, Caixuan Ren. Pointwise wave behavior of the initial-boundary value problem for the nonlinear damped wave equation in $\mathbb{R}_{+}^{n} $. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3265-3280. doi: 10.3934/dcdsb.2018319

[19]

Minoo Kamrani. Numerical solution of partial differential equations with stochastic Neumann boundary conditions. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5337-5354. doi: 10.3934/dcdsb.2019061

[20]

Stéphane Gerbi, Belkacem Said-Houari. Exponential decay for solutions to semilinear damped wave equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 559-566. doi: 10.3934/dcdss.2012.5.559

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (192)
  • HTML views (183)
  • Cited by (0)

Other articles
by authors

[Back to Top]