[1]
|
H. Attouch, J. Bolte and B. F. Svaiter, Convergence of descent methods for semi-algebraic and tame problems: Proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods, Math. Program., 137 (2013), 91-129.
doi: 10.1007/s10107-011-0484-9.
|
[2]
|
J. Bai and X.-C. Feng, Fractional-order anisotropic diffusion for image denoising, IEEE Tran. Image Proc., 16 (2007), 2492-2502.
doi: 10.1109/TIP.2007.904971.
|
[3]
|
J. Bolte, A. Daniilidis, A. Lewis, et al., Clarke subgradients of stratifiable functions, SIAM J. Optim., 18 (2007), 556-572.
doi: 10.1137/060670080.
|
[4]
|
J. Bolte, S. Sabach and M. Teboulle, Proximal alternating linearized minimization for nonconvex and nonsmooth problems, Math. Program., 146 (2014), 459-494.
doi: 10.1007/s10107-013-0701-9.
|
[5]
|
J.-F. Cai, R. H. Chan and M. Nikolova, Two-phase approach for deblurring images corrupted by impulse plus Gaussian noise, Inverse Probl. Imaging, 2 (2008), 187-204.
doi: 10.3934/ipi.2008.2.187.
|
[6]
|
A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vis., 20 (2004), 89-97.
|
[7]
|
A. Chambolle and J. Darbon, On total variation minimization and surface evolution using parametric maximum flows, Int. J. Comput. Vis., 84 (2009), 288-307.
doi: 10.1007/s11263-009-0238-9.
|
[8]
|
T. F. Chan and S. Esedoglu, Aspects of total variation regularized L1 function approximation, SIAM J. Appl. Math., 65 (2005), 1817-1837.
doi: 10.1137/040604297.
|
[9]
|
D. Chen, Y. Chen and D. Xue, Fractional-order total variation image restoration based on primal-dual algorithm, Abstract and Applied Analysis, 2013 (2013), 717-718.
doi: 10.1155/2013/585310.
|
[10]
|
D. Chen, S. Sun, C. Zhang, et al., Fractional-order TV-L2 model for image denoising, Cent. Eur. J. Phys., 11 (2013), 1414-1422.
doi: 10.2478/s11534-013-0241-1.
|
[11]
|
X. Chen, X. Liu, J. Zheng, et al., Nonlocal low-rank regularized two-phase approach for mixed noise removal, Inverse Probl., 37 (2021), 085001.
doi: 10.1088/1361-6420/ac0c21.
|
[12]
|
P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul., 4 (2005), 1168-1200.
doi: 10.1137/050626090.
|
[13]
|
I. Daubechies, M. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Commun. Pure Appl. Math., 57 (2004), 1413-1457.
doi: 10.1002/cpa.20042.
|
[14]
|
I. Daubechies and G. Teschke, Variational image restoration by means of wavelets: Simultaneous decomposition, deblurring, and denoising, Appl. Comput. Harmon. Anal., 19 (2005), 1-16.
doi: 10.1016/j.acha.2004.12.004.
|
[15]
|
J. Delon and A. Desolneux, A patch-based approach for removing impulse or mixed Gaussian-impulse noise, SIAM J. Imaging Sci., 6 (2013), 1140-1174.
doi: 10.1137/120885000.
|
[16]
|
L.-J. Deng, R. Glowinski and X.-C. Tai, A new operator splitting method for the Euler elastica model for image smoothing, SIAM J. Imaging Sci., 12 (2019), 1190-1230.
doi: 10.1137/18M1226361.
|
[17]
|
L. Ding and W. Han, A projected gradient method for $\alpha l_1-\beta l_2$ sparsity regularization, Inverse Probl., 36 (2020), 125012, 30 pp.
doi: 10.1088/1361-6420/abc857.
|
[18]
|
B. Dong, H. Ji, J. Li, et al., Wavelet frame based blind image inpainting, Appl. Comput. Harmon. Anal., 32 (2012), 268-279.
doi: 10.1016/j. acha. 2011.06.001.
|
[19]
|
C. X. Gao, N. Y. Wang, Q. Yu, et al., A feasible nonconvex relaxation approach to feature selection, Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, San Francisco, California, 2011, 356–361.
|
[20]
|
R. Garnett, T. Huegerich, C. Chui, et al., A universal noise removal algorithm with an impulse detector, IEEE Trans. Image Process., 14 (2005), 1747-1754.
doi: 10.1109/TIP. 2005.857261.
|
[21]
|
R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3$^rd$ edition, Prentice Hall, New Jersey, 2007.
|
[22]
|
Y. He, S. H. Kang and H. Liu, Curvature regularized surface reconstruction from point clouds, SIAM J. Imaging Sci., 13 (2020), 1834-1859.
doi: 10.1137/20M1314525.
|
[23]
|
M. Hintermuller and A. Langer, Subspace correction methods for a class of nonsmooth and nonadditive convex variational problems with mixed $L^1/L^2$ data-fidelity in image processing, SIAM J. Imaging Sci., 6 (2013), 2134-2173.
doi: 10.1137/120894130.
|
[24]
|
A. Langer, Automated parameter selection for total variation minimization in image restoration, J. Math. Imaging Vis., 57 (2017), 239-268.
doi: 10.1007/s10851-016-0676-2.
|
[25]
|
B. Li, Q. Liu, J. Xu, et al., A new method for removing mixed noises, Sci. China Inf. Sci., 54 (2011), 51-59.
doi: 10.1007/s11432-010-4128-0.
|
[26]
|
J. Liu, A. Ni and G. Ni, A nonconvex l1(l1-l2) model for image restoration with impulse noise, J. Comput. Appl. Math., 378 (2020), 112934.
doi: 10.1016/j.cam.2020.112934.
|
[27]
|
J. Liu, X. -C. Tai, H. Huang, et al., A weighted dictionary learning model for denoising images corrupted by mixed noise, IEEE Trans. Image Process., 22 (2012), 1108-1120.
doi: 10.1109/TIP. 2012.2227766.
|
[28]
|
E. López-Rubio, Restoration of images corrupted by Gaussian and uniform impulsive noise, Pattern Recognit., 43 (2010), 1835-1846.
doi: 10.1016/j.patcog.2009.11.017.
|
[29]
|
L. Ma, L. Xu and T. Zeng, Low rank prior and total variation regularization for image deblurring, J. Sci. Comput., 70 (2017), 1336-1357.
doi: 10.1007/s10915-016-0282-x.
|
[30]
|
J. -J. Mei, Y. Dong, T. -Z. Huang, et al., Cauchy noise removal by nonconvex ADMM with convergence guarantees, J. Sci. Comput., 74 (2018), 743-766.
doi: 10.1007/s10915-017-0460-5.
|
[31]
|
Y. Nesterov, Smooth minimization of non-smooth functions, Math. Program., 103 (2005), 127-152.
doi: 10.1007/s10107-004-0552-5.
|
[32]
|
D. Qiu, M. Bai, M. K. Ng, et al., Nonlocal robust tensor recovery with nonconvex regularization, Inverse Probl., 37 (2021), 035001.
doi: 10.1088/1361-6420/abd85b.
|
[33]
|
Y. Shen, B. Han and E. Braverman, Removal of mixed Gaussian and impulse noise using directional tensor product complex tight framelets, J. Math. Imaging Vis., 54 (2016), 64-77.
doi: 10.1007/s10851-015-0589-5.
|
[34]
|
P. Weiss, L. Blanc-Féraud and G. Aubert, Efficient schemes for total variation minimization under constraints in image processing, SIAM J. Sci. Comput., 31 (2009), 2047-2080.
doi: 10.1137/070696143.
|
[35]
|
M. Yan, Restoration of images corrupted by impulse noise and mixed Gaussian impulse noise using blind inpainting, SIAM J. Imaging Sci., 6 (2013), 1227-1245.
doi: 10.1137/12087178X.
|
[36]
|
J. Yang, W. Yin, Y. Zhang, et al., A fast algorithm for edge-preserving variational multichannel image restoration, SIAM J. Imaging Sci., 2 (2009), 569-592.
doi: 10.1137/080730421.
|
[37]
|
J. Yang, Y. Zhang and W. Yin, An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise, SIAM J. Sci. Comput., 31 (2009), 2842-2865.
doi: 10.1137/080732894.
|
[38]
|
J. Yang, Y. Zhang and W. Yin, A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data, IEEE J. Sel. Top. Signal Process., 4 (2010), 288-297.
doi: 10.1109/JSTSP.2010.2042333.
|
[39]
|
K. Željko, J. Maly and V. Naumova, Computational approaches to nonconvex sparsity-inducing multi-penalty regularization, Inverse Probl., 37 (2021), 055008.
doi: 10.1088/1361-6420/abdd46.
|
[40]
|
J. Zhang and K. Chen, A total fractional-order variation model for image restoration with nonhomogeneous boundary conditions and its numerical solution, SIAM J. Imaging Sci., 8 (2015), 2487-2518.
doi: 10.1137/14097121X.
|
[41]
|
J. Zhang, Z. Wei and L. Xiao, Adaptive fractional-order multi-scale method for image denoising, J. Math. Imaging Vis., 43 (2012), 39-49.
doi: 10.1007/s10851-011-0285-z.
|
[42]
|
X. Zhang, M. Bai and M. K. Ng, Nonconvex-TV based image restoration with impulse noise removal, SIAM J. Imaging Sci., 10 (2017), 1627-1667.
doi: 10.1137/16M1076034.
|