Article Contents
Article Contents

# Counterexamples to uniqueness in the inverse fractional conductivity problem with partial data

• *Corresponding author: Jesse Railo

The first author is supported by the Vilho, Yrjö and Kalle Väisälä Foundation of the Finnish Academy of Science and Letters

• We construct counterexamples for the partial data inverse problem for the fractional conductivity equation in all dimensions on general bounded open sets. In particular, we show that for any bounded domain $\Omega \subset {\mathbb R}^n$ and any disjoint open sets $W_1, W_2 \Subset {\mathbb R}^n \setminus \overline{\Omega}$ there always exist two positive, bounded, smooth, conductivities $\gamma_1, \gamma_2$, $\gamma_1 \neq \gamma_2$, with equal partial exterior Dirichlet-to-Neumann maps $\Lambda_{\gamma_1}f|_{W_2} = \Lambda_{\gamma_2}f|_{W_2}$ for all $f \in C_c^{\infty}(W_1)$. The proof uses the characterization of equal exterior data from another work of the authors in combination with the maximum principle of fractional Laplacians. The main technical difficulty arises from the requirement that the conductivities should be strictly positive and have a special regularity property $\gamma_i^{1/2}-1 \in H^{2s, \frac{n}{2s}}( {\mathbb R}^n)$ for $i = 1, 2$. We also provide counterexamples on domains that are bounded in one direction when $n \geq 4$ or $s \in (0, n/4]$ when $n = 2, 3$ using a modification of the argument on bounded domains.

Mathematics Subject Classification: Primary: 35R30; Secondary: 26A33, 42B37, 46F12.

 Citation:

• Figure 1.  A graphical illustration of a possible geometric setting of Theorem 1.1. Here $\Omega\subset {\mathbb R}^n$ is taken for simplicity to be a bounded domain and the measurements are performed in the disjoint nonempty open subsets $W_1, W_2\subset \Omega_e$. Moreover, the supports of the background deviations $m_1, m_2$ do not necessarily coincide in the exterior $\Omega_e$ and can even be disjoint as illustrated above. In this case uniqueness may be lost

Figure 2.  A graphical illustration of the sets used in the proof of Theorem 1.2. Here $\Omega\subset {\mathbb R}^n$ is an arbitrary open bounded set and the measurements are performed in the disjoint open sets $W_1, W_2\subset\Omega_e$. In the proof, we construct in the first step a nonzero $s$-harmonic background deviation $\tilde{m}_2\in H^s( {\mathbb R}^n)$ in the set $\Omega'$, which has a smooth boundary and lies in the deformed annulus $\Omega_{3\epsilon}\setminus\overline{\Omega}_{2\epsilon}$, and then obtain by mollification a nonzero smooth $s-$harmonic function $m_2: = \tilde{m}_2\ast \rho_{\epsilon}$ in the set $\Omega$. The set $\omega\Subset\Omega_e\setminus\overline{W_1\cup W_2}$ is used to construct a cut-off function $\eta\in C_c^{\infty}(\omega_{3\epsilon})$ with $\eta|_{\overline{\omega}} = 1$, which $\tilde{m}_2$ has as an exterior value, and in the end this function leads to the property that $m_2$ is nonnegative and has compact support contained in $\Omega_{5\epsilon}\cup \omega_{5\epsilon}$. Note that the topology of the sets $\Omega$ and $\omega$ could be also very complicated

•  [1] S. N. Chandler-Wilde, D. P. Hewett and A. Moiola, Sobolev spaces on non-Lipschitz subsets of $\Bbb{R}^n$ with application to boundary integral equations on fractal screens, Integral Equations Operator Theory, 87 (2017), 179-224.  doi: 10.1007/s00020-017-2342-5. [2] G. Covi, An inverse problem for the fractional Schrödinger equation in a magnetic field, Inverse Problems, 36 (2020), 045004, 24 pp. doi: 10.1088/1361-6420/ab661a. [3] G. Covi, Inverse problems for a fractional conductivity equation, Nonlinear Anal., 193 (2020), 111418, 18 pp. doi: 10.1016/j.na.2019.01.008. [4] G. Covi, Uniqueness for the fractional Calderón problem with quasilocal perturbations, 2021, arXiv: 2110.11063. doi: 10.48550/arXiv.2110.11063. [5] G. Covi, M. A. García-Ferrero and A. Rüland, On the Calderón problem for nonlocal Schrödinger equations with homogeneous, directionally antilocal principal symbols, 2021, arXiv: 2109.14976. doi: 10.48550/arXiv.2109.14976. [6] G. Covi, K. Mönkkönen and J. Railo, Unique continuation property and Poincaré inequality for higher order fractional Laplacians with applications in inverse problems, Inverse Probl. Imaging, 15 (2021), 641-681.  doi: 10.3934/ipi.2021009. [7] G. Covi, K. Mönkkönen, J. Railo and G. Uhlmann, The higher order fractional Calderón problem for linear local operators: Uniqueness, Adv. Math., 399 (2022), Paper No. 108246, 29 pp. doi: 10.1016/j.aim.2022.108246. [8] G. Covi, J. Railo and P. Zimmermann, The global inverse fractional conductivity problem, arXiv: 2204.04325. doi: 10.48550/arXiv.2204.04325. [9] T. Daudé, N. Kamran and F. Nicoleau, Non-uniqueness results for the anisotropic Calderón problem with data measured on disjoint sets, Ann. Inst. Fourier (Grenoble), 69 (2019), 119-170.  doi: 10.5802/aif.3240. [10] T. Daudé, N. Kamran and F. Nicoleau, On the hidden mechanism behind non-uniqueness for the anisotropic Calderón problem with data on disjoint sets, Ann. Henri Poincaré, 20 (2019), 859-887.  doi: 10.1007/s00023-018-00755-2. [11] T. Daudé, N. Kamran and F. Nicoleau, The anisotropic Calderón problem for singular metrics of warped product type: The borderline between uniqueness and invisibility, J. Spectr. Theory, 10 (2020), 703-746.  doi: 10.4171/JST/310. [12] T. Daudé, N. Kamran and F. Nicoleau, On nonuniqueness for the anisotropic Calderón problem with partial data, Forum Math. Sigma, 8 (2020), Paper No. e7, 17 pp. doi: 10.1017/fms.2020.1. [13] T. Daudé, N. Kamran and F. Nicoleau, A survey of non-uniqueness results for the anisotropic Calderón problem with disjoint data, in Nonlinear Analysis in Geometry and Applied Mathematics. Part 2, vol. 2 of Harv. Univ. Cent. Math. Sci. Appl. Ser. Math., Int. Press, Somerville, MA, 2018, 77-101. doi: 10.48550/arXiv.1803.00910. [14] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004. [15] Q. Du, M. Gunzburger, R. B. Lehoucq and K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Rev., 54 (2012), 667-696.  doi: 10.1137/110833294. [16] A. Feizmohammadi, Fractional Calderón problem on a closed Riemannian manifold, 2021, arXiv: 2110.07500. doi: 10.48550/arXiv.2110.07500. [17] A. Feizmohammadi, T. Ghosh, K. Krupchyk and G. Uhlmann, Fractional anisotropic Calderón problem on closed Riemannian manifolds, 2021, arXiv: 2112.03480. doi: 10.48550/arXiv.2112.03480. [18] T. Ghosh, Y.-H. Lin and J. Xiao, The Calderón problem for variable coefficients nonlocal elliptic operators, Comm. Partial Differential Equations, 42 (2017), 1923-1961.  doi: 10.1080/03605302.2017.1390681. [19] T. Ghosh, A. Rüland, M. Salo and G. Uhlmann, Uniqueness and reconstruction for the fractional Calderón problem with a single measurement, J. Funct. Anal., 279 (2020), 108505, 42 pp. doi: 10.1016/j.jfa.2020.108505. [20] T. Ghosh, M. Salo and G. Uhlmann, The Calderón problem for the fractional Schrödinger equation, Anal. PDE, 13 (2020), 455-475.  doi: 10.2140/apde.2020.13.455. [21] T. Ghosh and G. Uhlmann, The Calderón problem for nonlocal operators, 2021, arXiv: 2110.09265. doi: 10.48550/arXiv.2110.09265. [22] A. Greenleaf, Y. Kurylev, M. Lassas, U. Leonhardt and G. Uhlmann, Cloaked electromagnetic, acoustic, and quantum amplifiers via transformation optics, Proceedings of the National Academy of Sciences, 109 (2012), 10169-10174.  doi: 10.1073/pnas.1116864109. [23] A. Greenleaf, Y. Kurylev, M. Lassas and G. Uhlmann, Invisibility and inverse problems, Bull. Amer. Math. Soc. (N.S.), 46 (2009), 55-97.  doi: 10.1090/S0273-0979-08-01232-9. [24] A. Greenleaf, M. Lassas and G. Uhlmann, The Calderón problem for conormal potentials. I. Global uniqueness and reconstruction, Comm. Pure Appl. Math., 56 (2003), 328-352.  doi: 10.1002/cpa.10061. [25] A. Greenleaf, M. Lassas and G. Uhlmann, On nonuniqueness for Calderón's inverse problem, Math. Res. Lett., 10 (2003), 685-693.  doi: 10.4310/MRL.2003.v10.n5.a11. [26] H. Koch, A. Rüland and M. Salo, On instability mechanisms for inverse problems, Ars Inveniendi Analytica, 2021, Paper No. 7, 93 pp. doi: 10.15781/c93s-pk62. [27] K. Krupchyk and G. Uhlmann, Uniqueness in an inverse boundary problem for a magnetic Schrödinger operator with a bounded magnetic potential, Comm. Math. Phys., 327 (2014), 993-1009.  doi: 10.1007/s00220-014-1942-z. [28] R.-Y. Lai and Y.-H. Lin, Inverse problems for fractional semilinear elliptic equations, Nonlinear Anal., 216 (2022), Paper No. 112699. doi: 10.1016/j.na.2021.112699. [29] L. Li, Determining the magnetic potential in the fractional magnetic Calderón problem, Comm. Partial Differential Equations, 46 (2021), 1017-1026.  doi: 10.1080/03605302.2020.1857406. [30] L. Li, An inverse problem for a fractional diffusion equation with fractional power type nonlinearities, Inverse Probl. Imaging, 16 (2022), 613-624.  doi: 10.3934/ipi.2021064. [31] T. Liimatainen and L. Oksanen, Counterexamples to inverse problems for the wave equation, Inverse Probl. Imaging, 16 (2022), 467-479.  doi: 10.3934/ipi.2021058. [32] J. Railo and P. Zimmermann, Fractional Calderón problems and Poincaré inequalities on unbounded domains, 2022, arXiv: 2203.02425. doi: 10.48550/arXiv.2203.02425. [33] J. Railo and P. Zimmermann, Low regularity theory for the inverse fractional conductivity problem, 2022, arXiv: 2208.11465. doi: 10.48550/arXiv.2208.11465. [34] X. Ros-Oton, Nonlocal elliptic equations in bounded domains: A survey, Publ. Mat., 60 (2016), 3-26, URL http://projecteuclid.org/euclid.pm/1450818481. doi: 10.5565/PUBLMAT_60116_01. [35] A. Rüland, On single measurement stability for the fractional Calderón problem, SIAM J. Math. Anal., 53 (2021), 5094-5113.  doi: 10.1137/20M1381964. [36] A. Rüland and M. Salo, Exponential instability in the fractional Calderón problem, Inverse Problems, 34 (2018), 045003, 21 pp. doi: 10.1088/1361-6420/aaac5a. [37] A. Rüland and M. Salo, The fractional Calderón problem: Low regularity and stability, Nonlinear Anal., 193 (2020), 111529, 56 pp. doi: 10.1016/j.na.2019.05.010. [38] J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125 (1987), 153-169.  doi: 10.2307/1971291. [39] G. Uhlmann, Electrical impedance tomography and Calderón's problem, Inverse Problems, 25 (2009), 123011, 39 pp. doi: 10.1088/0266-5611/25/12/123011. [40] G. Uhlmann, Inverse problems: Seeing the unseen, Bull. Math. Sci., 4 (2014), 209-279.  doi: 10.1007/s13373-014-0051-9.

Figures(2)