-
Previous Article
A closing scheme for finding almost-invariant sets in open dynamical systems
- JCD Home
- This Issue
-
Next Article
Continuation and collapse of homoclinic tangles
An equation-free approach to coarse-graining the dynamics of networks
1. | Program in Applied and Computational Mathematics (PACM), Princeton University, Princeton, New Jersey 08544, United States |
2. | Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States |
3. | Institute of Mathematics, Budapest University of Technology (BME), H-1111 Budapest, Hungary |
4. | Department of Chemical and Biological Engineering, and Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544 |
References:
[1] |
R. Albert and A. L. Barabási, Statistical mechanics of complex networks,, Rev. Mod. Phys., 74 (2002), 47.
doi: 10.1103/RevModPhys.74.47. |
[2] |
A. Arenas, A. Díaz-Guilera and C. J. Pérez-Vicente, Synchronization reveals topological scales in complex networks,, Phys. Rev. Lett., 96 (2006).
doi: 10.1103/PhysRevLett.96.114102. |
[3] |
A. L. Barabási and R. Albert, Emergence of scaling in random networks,, Science, 286 (1999), 509.
doi: 10.1126/science.286.5439.509. |
[4] |
A. Barrat, M. Barthelemy and A. Vespignani, Dynamical Processes on Complex Networks,, Cambridge University Press, (2008).
doi: 10.1017/CBO9780511791383. |
[5] |
T. Binzegger, R. J. Douglas and K. A. C. Martin, Topology and dynamics of the canonical circuit of cat v1,, Neural Networks, 22 (2009), 1071.
doi: 10.1016/j.neunet.2009.07.011. |
[6] |
J. Blitzstein and P. Diaconis, A Sequential Importance Sampling Algorithm for Generating Random Graphs with Prescribed Degrees,, Technical report, (2006).
doi: 10.1080/15427951.2010.557277. |
[7] |
S. Boccaletti, V. Latora, Y. Moreno, M. Chavez and D.-U. Hwang, Complex networks: Structure and dynamics,, Physics Reports, 424 (2006), 175.
doi: 10.1016/j.physrep.2005.10.009. |
[8] |
K. A. Bold, Y. Zou, I. G. Kevrekidis and M. A. Hensonevrekidis, An equation-free approach to analyzing heterogeneous cell population dynamics,, J. Math. Biol., 55 (2007), 331.
doi: 10.1007/s00285-007-0086-6. |
[9] |
B. Bollobas, A probabilistic proof of an asymptotic formula for the number of labelled regular graphs,, European J. Combin., 1 (1980), 311.
doi: 10.1016/S0195-6698(80)80030-8. |
[10] |
C. Borgs, J. Chayes, L. Lovász, V. Sós and K. Vesztergombi, Topics in Discrete Mathematics: Algorithms and Combinatorics,, Springer, (2006). Google Scholar |
[11] |
L. Chen, P. G. Debenedetti, C. W. Gear and I. G. Kevrekidis, From molecular dynamics to coarse self-similar solutions: a simple example using equation-free computation,, J. Non-Newton Fluid, 120 (2004), 215.
doi: 10.1016/j.jnnfm.2003.12.007. |
[12] |
F. Chung and L. Lu, Connected components in random graphs with given expected degree sequences,, Ann. Comb., 6 (2002), 125.
doi: 10.1007/PL00012580. |
[13] |
S. N. Dorogovtsev, J. F. F. Mendes and A. N. Samukhin, How to construct a correlated net,, eprint, (). Google Scholar |
[14] |
S. N. Dorogovtsev and J. F. F. Mendes, Evolution of networks,, Adv. Phys., 51 (2002), 1079.
doi: 10.1093/acprof:oso/9780198515906.001.0001. |
[15] |
M. Faloutsos, P. Faloutsos and C. Faloutsos, On power-law relationships of the internet topology,, In SIGCOMM, (1999), 251.
doi: 10.1145/316194.316229. |
[16] |
C. Gounaris, K. Rajendran, I. G. Kevrekidis and C. Floudas, Generation of networks with prescribed degree-dependent clustering,, Optim. Lett., 5 (2011), 435.
doi: 10.1007/s11590-011-0319-x. |
[17] |
T. Gross and I. G. Kevrekidis, Robust oscillations in SIS epidemics on adaptive networks: Coarse graining by automated moment closure,, Europhys. Lett., 82 (2008).
doi: 10.1209/0295-5075/82/38004. |
[18] |
S. L. Hakimi, On realizability of a set of integers as degrees of the vertices of a linear graph. I,, J. Soc. Ind. Appl. Math., 10 (1962), 496.
doi: 10.1137/0110037. |
[19] |
V. Havel, A remark on the existence of finite graphs. (czech),, Casopis Pest. Mat., 80 (1955), 477. Google Scholar |
[20] |
M. Ispány and G. Pap, A note on weak convergence of random step processes,, Acta Mathematica Hungarica, 126 (2010), 381.
doi: 10.1007/s10474-009-9099-5. |
[21] |
C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations,, number 16 in Frontiers in Applied Mathematics, (1995).
doi: 10.1137/1.9781611970944. |
[22] |
I. G. Kevrekidis, C. W. Gear and G. Hummer, Equation-free: The computer-aided analysis of complex multiscale systems,, AIChE Journal, 50 (2004), 1346.
doi: 10.1002/aic.10106. |
[23] |
I. G. Kevrekidis, C. W. Gear, J. M. Hyman, P. G. Kevrekidis, O. Runborg and C. Theodoropoulos, Equation-free, coarse-grained multiscale computation: Enabling microscopic simulators to perform system-level analysis,, Commun. Math. Sci., 1 (2003), 715.
doi: 10.4310/CMS.2003.v1.n4.a5. |
[24] |
I. G. Kevrekidis and G. Samaey, Equation-free multiscale computation: Algorithms and applications,, Annu. Rev. Phys. Chem., 60 (2009), 321.
doi: 10.1146/annurev.physchem.59.032607.093610. |
[25] |
B. J. Kim, Performance of networks of artificial neurons: The role of clustering,, Phys. Rev. E, 69 (2004).
doi: 10.1103/PhysRevE.69.045101. |
[26] |
S. Lafon and A. B. Lee, Diffusion maps and coarse-graining: A unified framework for dimensionality reduction, graph partitioning and data set parameterization,, IEEE T. Pattern Anal., 28 (2006), 1393.
doi: 10.1109/TPAMI.2006.184. |
[27] |
C. R. Laing, The dynamics of chimera states in heterogeneous kuramoto networks,, Physica D, 238 (2009), 1569.
doi: 10.1016/j.physd.2009.04.012. |
[28] |
P. Li and Z. Yi, Synchronization of Kuramoto oscillators in random complex networks,, Physica A, 387 (2008), 1669.
doi: 10.1016/j.physa.2007.11.008. |
[29] |
L. Lovász, Very large graphs,, eprint, (). Google Scholar |
[30] |
L. Lovász and B. Szegedy, Limits of dense graph sequences,, J. Comb. Theory Ser. B, 96 (2006), 933.
doi: 10.1016/j.jctb.2006.05.002. |
[31] |
S. J. Moon, B. Nabet, N. E. Leonard, S. A. Levin and I. G. Kevrekidis, Heterogeneous animal group models and their group-level alignment dynamics: An equation-free approach,, J. Theor. Biol., 246 (2007), 100.
doi: 10.1016/j.jtbi.2006.12.018. |
[32] |
F. Mori and T. Odagaki, Synchronization of coupled oscillators on small-world networks,, Physica D, 238 (2009), 1180.
doi: 10.1016/j.physd.2009.04.002. |
[33] |
B. Nadler, S. Lafon, R. R. Coifman and I. G. Kevrekidis, Diffusion maps, spectral clustering and reaction coordinates of dynamical systems,, Appl. Comput. Harmon. A., 21 (2006), 113.
doi: 10.1016/j.acha.2005.07.004. |
[34] |
M. E. J. Newman, The structure and function of complex networks,, SIAM Review, 45 (2003), 167.
doi: 10.1137/S003614450342480. |
[35] |
M. E. J. Newman, D. J. Watts and S. H. Strogatz, Random graph models of social networks,, Proc. Natl. Acad. Sci., 1 (2002), 2566.
doi: 10.1073/pnas.012582999. |
[36] |
M. E. J. Newman, A. L. Barabási and D. J. Watts, The Structure and Dynamics of Networks,, Princeton University Press, (2006).
|
[37] |
K. Rajendran and I. G. Kevrekidis, Coarse graining the dynamics of heterogeneous oscillators in networks with spectral gaps,, Phys. Rev. E, 84 (2011).
doi: 10.1103/PhysRevE.84.036708. |
[38] |
Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems,, SIAM J. Sci. Stat. Comp., 7 (1986), 856.
doi: 10.1137/0907058. |
[39] |
M. A. Serrano and M. Boguná, Tuning clustering in random networks with arbitrary degree distributions,, Phys. Rev. E, 72 (2005). Google Scholar |
[40] |
R. Toivonen, L. Kovanen, M. Kivelä, J. Onnela, J. Saramäki and K. Kaski, A comparative study of social network models: Network evolution models and nodal attribute models,, Soc. Networks, 31 (2009), 240.
doi: 10.1016/j.socnet.2009.06.004. |
[41] |
S. V. N. Vishwanathan, K. M. Borgwardt, I. Risi Kondor and N. N. Schraudolph, Graph Kernels,, eprint, (). Google Scholar |
[42] |
D. J. Watts and S. H. Strogatz, Collective dynamics of ‘small-world' networks,, Nature, 393 (1998), 440. Google Scholar |
[43] |
N. C. Wormald, Some problems in the enumeration of labelled graphs,, B. Aust. Math. Soc., 21 (1980), 159.
doi: 10.1017/S0004972700011436. |
show all references
References:
[1] |
R. Albert and A. L. Barabási, Statistical mechanics of complex networks,, Rev. Mod. Phys., 74 (2002), 47.
doi: 10.1103/RevModPhys.74.47. |
[2] |
A. Arenas, A. Díaz-Guilera and C. J. Pérez-Vicente, Synchronization reveals topological scales in complex networks,, Phys. Rev. Lett., 96 (2006).
doi: 10.1103/PhysRevLett.96.114102. |
[3] |
A. L. Barabási and R. Albert, Emergence of scaling in random networks,, Science, 286 (1999), 509.
doi: 10.1126/science.286.5439.509. |
[4] |
A. Barrat, M. Barthelemy and A. Vespignani, Dynamical Processes on Complex Networks,, Cambridge University Press, (2008).
doi: 10.1017/CBO9780511791383. |
[5] |
T. Binzegger, R. J. Douglas and K. A. C. Martin, Topology and dynamics of the canonical circuit of cat v1,, Neural Networks, 22 (2009), 1071.
doi: 10.1016/j.neunet.2009.07.011. |
[6] |
J. Blitzstein and P. Diaconis, A Sequential Importance Sampling Algorithm for Generating Random Graphs with Prescribed Degrees,, Technical report, (2006).
doi: 10.1080/15427951.2010.557277. |
[7] |
S. Boccaletti, V. Latora, Y. Moreno, M. Chavez and D.-U. Hwang, Complex networks: Structure and dynamics,, Physics Reports, 424 (2006), 175.
doi: 10.1016/j.physrep.2005.10.009. |
[8] |
K. A. Bold, Y. Zou, I. G. Kevrekidis and M. A. Hensonevrekidis, An equation-free approach to analyzing heterogeneous cell population dynamics,, J. Math. Biol., 55 (2007), 331.
doi: 10.1007/s00285-007-0086-6. |
[9] |
B. Bollobas, A probabilistic proof of an asymptotic formula for the number of labelled regular graphs,, European J. Combin., 1 (1980), 311.
doi: 10.1016/S0195-6698(80)80030-8. |
[10] |
C. Borgs, J. Chayes, L. Lovász, V. Sós and K. Vesztergombi, Topics in Discrete Mathematics: Algorithms and Combinatorics,, Springer, (2006). Google Scholar |
[11] |
L. Chen, P. G. Debenedetti, C. W. Gear and I. G. Kevrekidis, From molecular dynamics to coarse self-similar solutions: a simple example using equation-free computation,, J. Non-Newton Fluid, 120 (2004), 215.
doi: 10.1016/j.jnnfm.2003.12.007. |
[12] |
F. Chung and L. Lu, Connected components in random graphs with given expected degree sequences,, Ann. Comb., 6 (2002), 125.
doi: 10.1007/PL00012580. |
[13] |
S. N. Dorogovtsev, J. F. F. Mendes and A. N. Samukhin, How to construct a correlated net,, eprint, (). Google Scholar |
[14] |
S. N. Dorogovtsev and J. F. F. Mendes, Evolution of networks,, Adv. Phys., 51 (2002), 1079.
doi: 10.1093/acprof:oso/9780198515906.001.0001. |
[15] |
M. Faloutsos, P. Faloutsos and C. Faloutsos, On power-law relationships of the internet topology,, In SIGCOMM, (1999), 251.
doi: 10.1145/316194.316229. |
[16] |
C. Gounaris, K. Rajendran, I. G. Kevrekidis and C. Floudas, Generation of networks with prescribed degree-dependent clustering,, Optim. Lett., 5 (2011), 435.
doi: 10.1007/s11590-011-0319-x. |
[17] |
T. Gross and I. G. Kevrekidis, Robust oscillations in SIS epidemics on adaptive networks: Coarse graining by automated moment closure,, Europhys. Lett., 82 (2008).
doi: 10.1209/0295-5075/82/38004. |
[18] |
S. L. Hakimi, On realizability of a set of integers as degrees of the vertices of a linear graph. I,, J. Soc. Ind. Appl. Math., 10 (1962), 496.
doi: 10.1137/0110037. |
[19] |
V. Havel, A remark on the existence of finite graphs. (czech),, Casopis Pest. Mat., 80 (1955), 477. Google Scholar |
[20] |
M. Ispány and G. Pap, A note on weak convergence of random step processes,, Acta Mathematica Hungarica, 126 (2010), 381.
doi: 10.1007/s10474-009-9099-5. |
[21] |
C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations,, number 16 in Frontiers in Applied Mathematics, (1995).
doi: 10.1137/1.9781611970944. |
[22] |
I. G. Kevrekidis, C. W. Gear and G. Hummer, Equation-free: The computer-aided analysis of complex multiscale systems,, AIChE Journal, 50 (2004), 1346.
doi: 10.1002/aic.10106. |
[23] |
I. G. Kevrekidis, C. W. Gear, J. M. Hyman, P. G. Kevrekidis, O. Runborg and C. Theodoropoulos, Equation-free, coarse-grained multiscale computation: Enabling microscopic simulators to perform system-level analysis,, Commun. Math. Sci., 1 (2003), 715.
doi: 10.4310/CMS.2003.v1.n4.a5. |
[24] |
I. G. Kevrekidis and G. Samaey, Equation-free multiscale computation: Algorithms and applications,, Annu. Rev. Phys. Chem., 60 (2009), 321.
doi: 10.1146/annurev.physchem.59.032607.093610. |
[25] |
B. J. Kim, Performance of networks of artificial neurons: The role of clustering,, Phys. Rev. E, 69 (2004).
doi: 10.1103/PhysRevE.69.045101. |
[26] |
S. Lafon and A. B. Lee, Diffusion maps and coarse-graining: A unified framework for dimensionality reduction, graph partitioning and data set parameterization,, IEEE T. Pattern Anal., 28 (2006), 1393.
doi: 10.1109/TPAMI.2006.184. |
[27] |
C. R. Laing, The dynamics of chimera states in heterogeneous kuramoto networks,, Physica D, 238 (2009), 1569.
doi: 10.1016/j.physd.2009.04.012. |
[28] |
P. Li and Z. Yi, Synchronization of Kuramoto oscillators in random complex networks,, Physica A, 387 (2008), 1669.
doi: 10.1016/j.physa.2007.11.008. |
[29] |
L. Lovász, Very large graphs,, eprint, (). Google Scholar |
[30] |
L. Lovász and B. Szegedy, Limits of dense graph sequences,, J. Comb. Theory Ser. B, 96 (2006), 933.
doi: 10.1016/j.jctb.2006.05.002. |
[31] |
S. J. Moon, B. Nabet, N. E. Leonard, S. A. Levin and I. G. Kevrekidis, Heterogeneous animal group models and their group-level alignment dynamics: An equation-free approach,, J. Theor. Biol., 246 (2007), 100.
doi: 10.1016/j.jtbi.2006.12.018. |
[32] |
F. Mori and T. Odagaki, Synchronization of coupled oscillators on small-world networks,, Physica D, 238 (2009), 1180.
doi: 10.1016/j.physd.2009.04.002. |
[33] |
B. Nadler, S. Lafon, R. R. Coifman and I. G. Kevrekidis, Diffusion maps, spectral clustering and reaction coordinates of dynamical systems,, Appl. Comput. Harmon. A., 21 (2006), 113.
doi: 10.1016/j.acha.2005.07.004. |
[34] |
M. E. J. Newman, The structure and function of complex networks,, SIAM Review, 45 (2003), 167.
doi: 10.1137/S003614450342480. |
[35] |
M. E. J. Newman, D. J. Watts and S. H. Strogatz, Random graph models of social networks,, Proc. Natl. Acad. Sci., 1 (2002), 2566.
doi: 10.1073/pnas.012582999. |
[36] |
M. E. J. Newman, A. L. Barabási and D. J. Watts, The Structure and Dynamics of Networks,, Princeton University Press, (2006).
|
[37] |
K. Rajendran and I. G. Kevrekidis, Coarse graining the dynamics of heterogeneous oscillators in networks with spectral gaps,, Phys. Rev. E, 84 (2011).
doi: 10.1103/PhysRevE.84.036708. |
[38] |
Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems,, SIAM J. Sci. Stat. Comp., 7 (1986), 856.
doi: 10.1137/0907058. |
[39] |
M. A. Serrano and M. Boguná, Tuning clustering in random networks with arbitrary degree distributions,, Phys. Rev. E, 72 (2005). Google Scholar |
[40] |
R. Toivonen, L. Kovanen, M. Kivelä, J. Onnela, J. Saramäki and K. Kaski, A comparative study of social network models: Network evolution models and nodal attribute models,, Soc. Networks, 31 (2009), 240.
doi: 10.1016/j.socnet.2009.06.004. |
[41] |
S. V. N. Vishwanathan, K. M. Borgwardt, I. Risi Kondor and N. N. Schraudolph, Graph Kernels,, eprint, (). Google Scholar |
[42] |
D. J. Watts and S. H. Strogatz, Collective dynamics of ‘small-world' networks,, Nature, 393 (1998), 440. Google Scholar |
[43] |
N. C. Wormald, Some problems in the enumeration of labelled graphs,, B. Aust. Math. Soc., 21 (1980), 159.
doi: 10.1017/S0004972700011436. |
[1] |
Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283 |
[2] |
Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077 |
[3] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[4] |
Maika Goto, Kazunori Kuwana, Yasuhide Uegata, Shigetoshi Yazaki. A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 881-891. doi: 10.3934/dcdss.2020233 |
[5] |
José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020376 |
[6] |
Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020295 |
[7] |
Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325 |
[8] |
Xiaoxian Tang, Jie Wang. Bistability of sequestration networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1337-1357. doi: 10.3934/dcdsb.2020165 |
[9] |
Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065 |
[10] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[11] |
Yutong Chen, Jiabao Su. Nontrivial solutions for the fractional Laplacian problems without asymptotic limits near both infinity and zero. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021007 |
[12] |
Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050 |
[13] |
Qiang Fu, Yanlong Zhang, Yushu Zhu, Ting Li. Network centralities, demographic disparities, and voluntary participation. Mathematical Foundations of Computing, 2020, 3 (4) : 249-262. doi: 10.3934/mfc.2020011 |
[14] |
Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020406 |
[15] |
Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304 |
[16] |
D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346 |
[17] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[18] |
Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020 doi: 10.3934/jcd.2021006 |
[19] |
Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond. A new model for the emergence of blood capillary networks. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2021001 |
[20] |
Leslaw Skrzypek, Yuncheng You. Feedback synchronization of FHN cellular neural networks. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021001 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]