January  2014, 1(1): 163-176. doi: 10.3934/jcd.2014.1.163

Global optimal feedbacks for stochastic quantized nonlinear event systems

1. 

Technische Universität München, Boltzmannstr. 3, 85747 Garching, Germany, Germany, Germany

Received  January 2012 Revised  February 2014 Published  April 2014

We consider nonlinear control systems for which only quantized and event-triggered state information is available and which are subject to random delays and losses in the transmission of the state to the controller. We present an optimization based approach for computing globally stabilizing controllers for such systems. Our method is based on recently developed set oriented techniques for transforming the problem into a shortest path problem on a weighted hypergraph. We show how to extend this approach to a system subject to a stochastic parameter and propose a corresponding model for dealing with transmission delays.
Citation: Stefan Jerg, Oliver Junge, Marcus Post. Global optimal feedbacks for stochastic quantized nonlinear event systems. Journal of Computational Dynamics, 2014, 1 (1) : 163-176. doi: 10.3934/jcd.2014.1.163
References:
[1]

K. Aström, Event based control,, in Analysis and Design of Nonlinear Control Systems (eds. A. Astolfi and L. Marconi), (2008), 127.  doi: 10.1007/978-3-540-74358-3_9.  Google Scholar

[2]

K. Åström and B. Wittenmark, Computer-Controlled Systems: Theory and Design,, Third Edition, (2011).   Google Scholar

[3]

S.-I. Azuma and T. Sugie, Dynamic quantization of nonlinear control systems,, Automatic Control, 57 (2012), 875.  doi: 10.1109/TAC.2011.2167824.  Google Scholar

[4]

D. P. Bertsekas, Dynamic Programming and Optimal Control. Vol. 2.,, Belmont, (1995).   Google Scholar

[5]

R. S. Bucy, Stability and positive supermartingales,, J. Differential Equations, 1 (1965), 151.  doi: 10.1016/0022-0396(65)90016-1.  Google Scholar

[6]

C. De Persis and F. Mazenc, Stability of quantized time-delay nonlinear systems: A Lyapunov-Krasowskii-functional approach,, in Proc. of IEEE Conf. on Decision and Control, (2009), 4093.   Google Scholar

[7]

W. Fleming, The convergence problem for differential games,, Journal of Mathematical Analysis and Applications, 3 (1961), 102.  doi: 10.1016/0022-247X(61)90009-9.  Google Scholar

[8]

D. Förstner, M. Jung and J. Lunze, A discrete-event model of asynchronous quantised systems,, Automatica, 38 (2002), 1277.  doi: 10.1016/S0005-1098(02)00023-7.  Google Scholar

[9]

E. Fridman and M. Dambrine, Control under quantization, saturation and delay: An LMI approach,, Automatica, 45 (2009), 2258.  doi: 10.1016/j.automatica.2009.05.020.  Google Scholar

[10]

L. Grüne and O. Junge, Approximately optimal nonlinear stabilization with preservation of the Lyapunov function property,, in Proc. 46th IEEE CDC, (2007), 702.   Google Scholar

[11]

L. Grüne and O. Junge, Global optimal control of perturbed systems,, JOTA, 136 (2008), 411.  doi: 10.1007/s10957-007-9312-z.  Google Scholar

[12]

L. Grüne and F. Müller, An algorithm for event-based optimal feedback control,, in Proc. 48th IEEE CDC, (2009), 5311.   Google Scholar

[13]

J. P. Hespanha, P. Naghshtabrizi and Y. Xu, A survey of recent results in networked control systems,, Proc. IEEE, 95 (2007), 138.  doi: 10.1109/JPROC.2006.887288.  Google Scholar

[14]

O. Junge, Rigorous discretization of subdivision techniques,, in EQUADIFF 99, (2000), 916.   Google Scholar

[15]

O. Junge and H. Osinga, A set oriented approach to global optimal control,, ESAIM Control Optim. Calc. Var., 10 (2004), 259.  doi: 10.1051/cocv:2004006.  Google Scholar

[16]

E. Kofman and J. Braslavsky, Level crossing sampling in feedback stabilization under data-rate constraints,, in Proc. IEEE CDC, (2006), 4423.  doi: 10.1109/CDC.2006.377483.  Google Scholar

[17]

H. Kushner, On the stability of stochastic dynamical systems,, Proc. Nat. Acad. Sci. USA, 53 (1965), 8.  doi: 10.1073/pnas.53.1.8.  Google Scholar

[18]

H. Kushner, Stochastic Stability and Control,, Mathematics in Science and Engineering, (1967).   Google Scholar

[19]

H. Kushner and G. Yin, Stochastic Approximation Algorithms and Applications,, Applications of Mathematics, (1997).   Google Scholar

[20]

D. Liberzon, Quantization, time delays, and nonlinear stabilization,, IEEE Transactions on Automatic Control, 51 (2006), 1190.  doi: 10.1109/TAC.2006.878780.  Google Scholar

[21]

D. Liberzon, Nonlinear control with limited information,, Commun. Inf. Syst., 9 (2009), 41.  doi: 10.4310/CIS.2009.v9.n1.a2.  Google Scholar

[22]

L. Litz, T. Gabriel, M. Groß and O. Gabel, Networked Control Systems (NCS) - Stand und Ausblick,, at - Automatisierungstechnik, 56 (2009), 4.  doi: 10.1524/auto.2008.0682.  Google Scholar

[23]

T. Liu, Z.-P. Jiang and D. J. Hill, Small-gain based output-feedback controller design for a class of nonlinear systems with actuator dynamic quantization,, Automatic Control, 57 (2012), 1326.  doi: 10.1109/TAC.2012.2191870.  Google Scholar

[24]

U. Lorenz and B. Monien, Error analysis in minimax trees,, TCS, 313 (2004), 485.  doi: 10.1016/j.tcs.2002.10.004.  Google Scholar

[25]

J. Lunze, Qualitative modelling of linear dynamical systems with quantized state measurements,, Automatica, 30 (1994), 417.  doi: 10.1016/0005-1098(94)90119-8.  Google Scholar

[26]

S. Mastellone, C. Abdallah and P. Dorato, Model-based networked control for nonlinear systems with stochastic packet dropout,, in Proc. American Control Conference., 4 (2005), 2365.  doi: 10.1109/ACC.2005.1470320.  Google Scholar

[27]

D. Nesic and D. Liberzon, A unified framework for design and analysis of networked and quantized control systems,, IEEE Transactions on Automatic Control, 54 (2009), 732.  doi: 10.1109/TAC.2009.2014930.  Google Scholar

[28]

G. Pola, P. Pepe, M. D. D. Benedetto and P. Tabuada, Symbolic models for nonlinear time-delay systems using approximate bisimulations,, Systems and Control Letters, 59 (2010), 365.  doi: 10.1016/j.sysconle.2010.04.001.  Google Scholar

[29]

R. Sailer and F. Wirth, Stabilization of nonlinear systems with delayed data-rate-limited feedback,, in Proc. European Control Conference, (2009), 1734.   Google Scholar

[30]

J. Schroeder, Modeling, State Observation and Diagnosis of Quantized Systems,, Springer, (2003).   Google Scholar

[31]

P. Tabuada, Event-triggered real-time scheduling of stabilizing control tasks,, IEEE Transactions on Automatic Control, 52 (2007), 1680.  doi: 10.1109/TAC.2007.904277.  Google Scholar

[32]

W. Tucker, A rigorous ODE solver and Smale's 14th problem,, Found. Comp. Math., 2 (2002), 53.   Google Scholar

[33]

M. von Lossow, A min-man version of Dijkstra's algorithm with application to perturbed optimal control problems.,, in In: Proceedings of the GAMM Annual Meeting, (2007).   Google Scholar

[34]

X. Wang and M. Lemmon, Event-triggering in distributed networked systems with data dropouts and delays,, Hybrid Systems: Computation and control (HSCC), (5469), 366.  doi: 10.1007/978-3-642-00602-9_26.  Google Scholar

[35]

C. Zhang, K. Chen and G. Dullerud, Stabilization of markovian jump linear systems with limited information - a convex approach,, in Proc. ACC, (2009), 4013.  doi: 10.1109/ACC.2009.5160685.  Google Scholar

[36]

C. Zhang and G. Dullerud, Uniform stabilization of markovian jump linear systems with logarithmic quantization,, in Proc. IEEE CDC, (2009), 2094.  doi: 10.1109/CDC.2009.5400361.  Google Scholar

[37]

L. Zhang, H. Gao and O. Kaynak, Network-induced constraints in networked control systems-a survey,, IEEE Transactions on Industrial Informatics, 9 (2013), 403.  doi: 10.1109/TII.2012.2219540.  Google Scholar

show all references

References:
[1]

K. Aström, Event based control,, in Analysis and Design of Nonlinear Control Systems (eds. A. Astolfi and L. Marconi), (2008), 127.  doi: 10.1007/978-3-540-74358-3_9.  Google Scholar

[2]

K. Åström and B. Wittenmark, Computer-Controlled Systems: Theory and Design,, Third Edition, (2011).   Google Scholar

[3]

S.-I. Azuma and T. Sugie, Dynamic quantization of nonlinear control systems,, Automatic Control, 57 (2012), 875.  doi: 10.1109/TAC.2011.2167824.  Google Scholar

[4]

D. P. Bertsekas, Dynamic Programming and Optimal Control. Vol. 2.,, Belmont, (1995).   Google Scholar

[5]

R. S. Bucy, Stability and positive supermartingales,, J. Differential Equations, 1 (1965), 151.  doi: 10.1016/0022-0396(65)90016-1.  Google Scholar

[6]

C. De Persis and F. Mazenc, Stability of quantized time-delay nonlinear systems: A Lyapunov-Krasowskii-functional approach,, in Proc. of IEEE Conf. on Decision and Control, (2009), 4093.   Google Scholar

[7]

W. Fleming, The convergence problem for differential games,, Journal of Mathematical Analysis and Applications, 3 (1961), 102.  doi: 10.1016/0022-247X(61)90009-9.  Google Scholar

[8]

D. Förstner, M. Jung and J. Lunze, A discrete-event model of asynchronous quantised systems,, Automatica, 38 (2002), 1277.  doi: 10.1016/S0005-1098(02)00023-7.  Google Scholar

[9]

E. Fridman and M. Dambrine, Control under quantization, saturation and delay: An LMI approach,, Automatica, 45 (2009), 2258.  doi: 10.1016/j.automatica.2009.05.020.  Google Scholar

[10]

L. Grüne and O. Junge, Approximately optimal nonlinear stabilization with preservation of the Lyapunov function property,, in Proc. 46th IEEE CDC, (2007), 702.   Google Scholar

[11]

L. Grüne and O. Junge, Global optimal control of perturbed systems,, JOTA, 136 (2008), 411.  doi: 10.1007/s10957-007-9312-z.  Google Scholar

[12]

L. Grüne and F. Müller, An algorithm for event-based optimal feedback control,, in Proc. 48th IEEE CDC, (2009), 5311.   Google Scholar

[13]

J. P. Hespanha, P. Naghshtabrizi and Y. Xu, A survey of recent results in networked control systems,, Proc. IEEE, 95 (2007), 138.  doi: 10.1109/JPROC.2006.887288.  Google Scholar

[14]

O. Junge, Rigorous discretization of subdivision techniques,, in EQUADIFF 99, (2000), 916.   Google Scholar

[15]

O. Junge and H. Osinga, A set oriented approach to global optimal control,, ESAIM Control Optim. Calc. Var., 10 (2004), 259.  doi: 10.1051/cocv:2004006.  Google Scholar

[16]

E. Kofman and J. Braslavsky, Level crossing sampling in feedback stabilization under data-rate constraints,, in Proc. IEEE CDC, (2006), 4423.  doi: 10.1109/CDC.2006.377483.  Google Scholar

[17]

H. Kushner, On the stability of stochastic dynamical systems,, Proc. Nat. Acad. Sci. USA, 53 (1965), 8.  doi: 10.1073/pnas.53.1.8.  Google Scholar

[18]

H. Kushner, Stochastic Stability and Control,, Mathematics in Science and Engineering, (1967).   Google Scholar

[19]

H. Kushner and G. Yin, Stochastic Approximation Algorithms and Applications,, Applications of Mathematics, (1997).   Google Scholar

[20]

D. Liberzon, Quantization, time delays, and nonlinear stabilization,, IEEE Transactions on Automatic Control, 51 (2006), 1190.  doi: 10.1109/TAC.2006.878780.  Google Scholar

[21]

D. Liberzon, Nonlinear control with limited information,, Commun. Inf. Syst., 9 (2009), 41.  doi: 10.4310/CIS.2009.v9.n1.a2.  Google Scholar

[22]

L. Litz, T. Gabriel, M. Groß and O. Gabel, Networked Control Systems (NCS) - Stand und Ausblick,, at - Automatisierungstechnik, 56 (2009), 4.  doi: 10.1524/auto.2008.0682.  Google Scholar

[23]

T. Liu, Z.-P. Jiang and D. J. Hill, Small-gain based output-feedback controller design for a class of nonlinear systems with actuator dynamic quantization,, Automatic Control, 57 (2012), 1326.  doi: 10.1109/TAC.2012.2191870.  Google Scholar

[24]

U. Lorenz and B. Monien, Error analysis in minimax trees,, TCS, 313 (2004), 485.  doi: 10.1016/j.tcs.2002.10.004.  Google Scholar

[25]

J. Lunze, Qualitative modelling of linear dynamical systems with quantized state measurements,, Automatica, 30 (1994), 417.  doi: 10.1016/0005-1098(94)90119-8.  Google Scholar

[26]

S. Mastellone, C. Abdallah and P. Dorato, Model-based networked control for nonlinear systems with stochastic packet dropout,, in Proc. American Control Conference., 4 (2005), 2365.  doi: 10.1109/ACC.2005.1470320.  Google Scholar

[27]

D. Nesic and D. Liberzon, A unified framework for design and analysis of networked and quantized control systems,, IEEE Transactions on Automatic Control, 54 (2009), 732.  doi: 10.1109/TAC.2009.2014930.  Google Scholar

[28]

G. Pola, P. Pepe, M. D. D. Benedetto and P. Tabuada, Symbolic models for nonlinear time-delay systems using approximate bisimulations,, Systems and Control Letters, 59 (2010), 365.  doi: 10.1016/j.sysconle.2010.04.001.  Google Scholar

[29]

R. Sailer and F. Wirth, Stabilization of nonlinear systems with delayed data-rate-limited feedback,, in Proc. European Control Conference, (2009), 1734.   Google Scholar

[30]

J. Schroeder, Modeling, State Observation and Diagnosis of Quantized Systems,, Springer, (2003).   Google Scholar

[31]

P. Tabuada, Event-triggered real-time scheduling of stabilizing control tasks,, IEEE Transactions on Automatic Control, 52 (2007), 1680.  doi: 10.1109/TAC.2007.904277.  Google Scholar

[32]

W. Tucker, A rigorous ODE solver and Smale's 14th problem,, Found. Comp. Math., 2 (2002), 53.   Google Scholar

[33]

M. von Lossow, A min-man version of Dijkstra's algorithm with application to perturbed optimal control problems.,, in In: Proceedings of the GAMM Annual Meeting, (2007).   Google Scholar

[34]

X. Wang and M. Lemmon, Event-triggering in distributed networked systems with data dropouts and delays,, Hybrid Systems: Computation and control (HSCC), (5469), 366.  doi: 10.1007/978-3-642-00602-9_26.  Google Scholar

[35]

C. Zhang, K. Chen and G. Dullerud, Stabilization of markovian jump linear systems with limited information - a convex approach,, in Proc. ACC, (2009), 4013.  doi: 10.1109/ACC.2009.5160685.  Google Scholar

[36]

C. Zhang and G. Dullerud, Uniform stabilization of markovian jump linear systems with logarithmic quantization,, in Proc. IEEE CDC, (2009), 2094.  doi: 10.1109/CDC.2009.5400361.  Google Scholar

[37]

L. Zhang, H. Gao and O. Kaynak, Network-induced constraints in networked control systems-a survey,, IEEE Transactions on Industrial Informatics, 9 (2013), 403.  doi: 10.1109/TII.2012.2219540.  Google Scholar

[1]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

[2]

Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134

[3]

Marcos C. Mota, Regilene D. S. Oliveira. Dynamic aspects of Sprott BC chaotic system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1653-1673. doi: 10.3934/dcdsb.2020177

[4]

Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353

[5]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[6]

Hai-Yang Jin, Zhi-An Wang. Global stabilization of the full attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3509-3527. doi: 10.3934/dcds.2020027

[7]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[8]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[9]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[10]

Tengfei Yan, Qunying Liu, Bowen Dou, Qing Li, Bowen Li. An adaptive dynamic programming method for torque ripple minimization of PMSM. Journal of Industrial & Management Optimization, 2021, 17 (2) : 827-839. doi: 10.3934/jimo.2019136

[11]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[12]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[13]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[14]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

[15]

Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021013

[16]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

[17]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[18]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[19]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[20]

Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030

 Impact Factor: 

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]