January  2014, 1(1): 177-189. doi: 10.3934/jcd.2014.1.177

On the consistency of ensemble transform filter formulations

1. 

Universität Potsdam, Institut für Mathematik, Am Neuen Palais 10, D-14469 Potsdam, Germany

2. 

Korea Institute of Atmospheric Prediction Systems, 4F Korea Computer Bldg., 35 Boramae-ro 5-gil, Dongjak-gu, Seoul 156-849, South Korea

Received  October 2011 Revised  July 2012 Published  April 2014

In this paper, we consider the data assimilation problem for perfect differential equation models without model error and for either continuous or intermittent observational data. The focus will be on the popular class of ensemble Kalman filters which rely on a Gaussian approximation in the data assimilation step. We discuss the impact of this approximation on the temporal evolution of the ensemble mean and covariance matrix. We also discuss options for reducing arising inconsistencies, which are found to be more severe for the intermittent data assimilation problem. Inconsistencies can, however, not be completely eliminated due to the classic moment closure problem. It is also found for the Lorenz-63 model that the proposed corrections only improve the filter performance for relatively large ensemble sizes.
Citation: Sebastian Reich, Seoleun Shin. On the consistency of ensemble transform filter formulations. Journal of Computational Dynamics, 2014, 1 (1) : 177-189. doi: 10.3934/jcd.2014.1.177
References:
[1]

J. Amezcua, E. Kalnay, K. Ide and S. Reich, Ensemble transform Kalman-Bucy filters,, Q. J. Royal Meteorological Soc., (2013).  doi: 10.1002/qj.2186.  Google Scholar

[2]

J. Anderson and S. Anderson, A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts,, Mon. Wea. Rev., 127 (1999), 2741.  doi: 10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2.  Google Scholar

[3]

A. Bain and D. Crisan, Fundamentals of Stochastic Filtering, vol. 60 of Stochastic modelling and applied probability,, Springer-Verlag, (2009).   Google Scholar

[4]

K. Bergemann, G. Gottwald and S. Reich, Ensemble propagation and continuous matrix factorization algorithms,, Q. J. R. Meteorological Soc., 135 (2009), 1560.  doi: 10.1002/qj.457.  Google Scholar

[5]

K. Bergemann and S. Reich, A localization technique for ensemble Kalman filters,, Q. J. R. Meteorological Soc., 136 (2010), 701.  doi: 10.1002/qj.591.  Google Scholar

[6]

K. Bergemann and S. Reich, A mollified ensemble Kalman filter,, Q. J. R. Meteorological Soc., 136 (2010), 1636.  doi: 10.1002/qj.672.  Google Scholar

[7]

K. Bergemann and S. Reich, An ensemble Kalman-Bucy filter for continuous data assimilation,, Meteorolog. Zeitschrift, 21 (2012), 213.  doi: 10.1127/0941-2948/2012/0307.  Google Scholar

[8]

D. Crisan and J. Xiong, Approximate McKean-Vlasov representation for a class of SPDEs,, Stochastics, 82 (2010), 53.  doi: 10.1080/17442500902723575.  Google Scholar

[9]

D. Crisan and J. Xiong, Numerical solution for a class of SPDEs over bounded domains,, Stochastics, (2013).  doi: 10.1051/proc:071916.  Google Scholar

[10]

G. Evensen, Data Assimilation. The Ensemble Kalman Filter,, Springer-Verlag, (2006).  doi: 10.1007/978-3-642-03711-5.  Google Scholar

[11]

A. Jazwinski, Stochastic Processes and Filtering Theory,, Academic Press, (1970).   Google Scholar

[12]

J. Lei and P. Bickel, A moment matching ensemble filter for nonlinear and non-Gaussian data assimilation,, Mon. Weath. Rev., 139 (2011), 3964.  doi: 10.1175/2011MWR3553.1.  Google Scholar

[13]

E. Lorenz, Deterministic non-periodic flows,, J. Atmos. Sci., 20 (1963), 130.   Google Scholar

[14]

S. Reich, A dynamical systems framework for intermittent data assimilation,, BIT Numer Math, 51 (2011), 235.  doi: 10.1007/s10543-010-0302-4.  Google Scholar

[15]

S. Reich, A Gaussian mixture ensemble transform filter,, Q. J. R. Meterolog. Soc., 138 (2012), 222.  doi: 10.1002/qj.898.  Google Scholar

[16]

M. Tippett, J. Anderson, G. Bishop, T. Hamill and J. Whitaker, Ensemble square root filters,, Mon. Wea. Rev., 131 (2003), 1485.  doi: 10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2.  Google Scholar

[17]

C. Villani, Topics in Optimal Transportation,, American Mathematical Society, (2003).  doi: 10.1007/b12016.  Google Scholar

[18]

X. Xiong, I. Navon and B. Uzungoglu, A note on the particle filter with posterior Gaussian resampling,, Tellus, 58 (2006), 456.  doi: 10.1111/j.1600-0870.2006.00185.x.  Google Scholar

[19]

T. Yang, P. Mehta and S. Meyn, Feedback particle filter,, IEEE Trans. on Automatic Control, 58 (2013), 2465.  doi: 10.1109/TAC.2013.2258825.  Google Scholar

show all references

References:
[1]

J. Amezcua, E. Kalnay, K. Ide and S. Reich, Ensemble transform Kalman-Bucy filters,, Q. J. Royal Meteorological Soc., (2013).  doi: 10.1002/qj.2186.  Google Scholar

[2]

J. Anderson and S. Anderson, A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts,, Mon. Wea. Rev., 127 (1999), 2741.  doi: 10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2.  Google Scholar

[3]

A. Bain and D. Crisan, Fundamentals of Stochastic Filtering, vol. 60 of Stochastic modelling and applied probability,, Springer-Verlag, (2009).   Google Scholar

[4]

K. Bergemann, G. Gottwald and S. Reich, Ensemble propagation and continuous matrix factorization algorithms,, Q. J. R. Meteorological Soc., 135 (2009), 1560.  doi: 10.1002/qj.457.  Google Scholar

[5]

K. Bergemann and S. Reich, A localization technique for ensemble Kalman filters,, Q. J. R. Meteorological Soc., 136 (2010), 701.  doi: 10.1002/qj.591.  Google Scholar

[6]

K. Bergemann and S. Reich, A mollified ensemble Kalman filter,, Q. J. R. Meteorological Soc., 136 (2010), 1636.  doi: 10.1002/qj.672.  Google Scholar

[7]

K. Bergemann and S. Reich, An ensemble Kalman-Bucy filter for continuous data assimilation,, Meteorolog. Zeitschrift, 21 (2012), 213.  doi: 10.1127/0941-2948/2012/0307.  Google Scholar

[8]

D. Crisan and J. Xiong, Approximate McKean-Vlasov representation for a class of SPDEs,, Stochastics, 82 (2010), 53.  doi: 10.1080/17442500902723575.  Google Scholar

[9]

D. Crisan and J. Xiong, Numerical solution for a class of SPDEs over bounded domains,, Stochastics, (2013).  doi: 10.1051/proc:071916.  Google Scholar

[10]

G. Evensen, Data Assimilation. The Ensemble Kalman Filter,, Springer-Verlag, (2006).  doi: 10.1007/978-3-642-03711-5.  Google Scholar

[11]

A. Jazwinski, Stochastic Processes and Filtering Theory,, Academic Press, (1970).   Google Scholar

[12]

J. Lei and P. Bickel, A moment matching ensemble filter for nonlinear and non-Gaussian data assimilation,, Mon. Weath. Rev., 139 (2011), 3964.  doi: 10.1175/2011MWR3553.1.  Google Scholar

[13]

E. Lorenz, Deterministic non-periodic flows,, J. Atmos. Sci., 20 (1963), 130.   Google Scholar

[14]

S. Reich, A dynamical systems framework for intermittent data assimilation,, BIT Numer Math, 51 (2011), 235.  doi: 10.1007/s10543-010-0302-4.  Google Scholar

[15]

S. Reich, A Gaussian mixture ensemble transform filter,, Q. J. R. Meterolog. Soc., 138 (2012), 222.  doi: 10.1002/qj.898.  Google Scholar

[16]

M. Tippett, J. Anderson, G. Bishop, T. Hamill and J. Whitaker, Ensemble square root filters,, Mon. Wea. Rev., 131 (2003), 1485.  doi: 10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2.  Google Scholar

[17]

C. Villani, Topics in Optimal Transportation,, American Mathematical Society, (2003).  doi: 10.1007/b12016.  Google Scholar

[18]

X. Xiong, I. Navon and B. Uzungoglu, A note on the particle filter with posterior Gaussian resampling,, Tellus, 58 (2006), 456.  doi: 10.1111/j.1600-0870.2006.00185.x.  Google Scholar

[19]

T. Yang, P. Mehta and S. Meyn, Feedback particle filter,, IEEE Trans. on Automatic Control, 58 (2013), 2465.  doi: 10.1109/TAC.2013.2258825.  Google Scholar

[1]

Geir Evensen, Javier Amezcua, Marc Bocquet, Alberto Carrassi, Alban Farchi, Alison Fowler, Pieter L. Houtekamer, Christopher K. Jones, Rafael J. de Moraes, Manuel Pulido, Christian Sampson, Femke C. Vossepoel. An international initiative of predicting the SARS-CoV-2 pandemic using ensemble data assimilation. Foundations of Data Science, 2020  doi: 10.3934/fods.2021001

[2]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[3]

Håkon Hoel, Gaukhar Shaimerdenova, Raúl Tempone. Multilevel Ensemble Kalman Filtering based on a sample average of independent EnKF estimators. Foundations of Data Science, 2020, 2 (4) : 351-390. doi: 10.3934/fods.2020017

[4]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[5]

Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286

[6]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365

[7]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[8]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[9]

Bao Wang, Alex Lin, Penghang Yin, Wei Zhu, Andrea L. Bertozzi, Stanley J. Osher. Adversarial defense via the data-dependent activation, total variation minimization, and adversarial training. Inverse Problems & Imaging, 2021, 15 (1) : 129-145. doi: 10.3934/ipi.2020046

[10]

Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007

[11]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076

[12]

Karol Mikula, Jozef Urbán, Michal Kollár, Martin Ambroz, Ivan Jarolímek, Jozef Šibík, Mária Šibíková. An automated segmentation of NATURA 2000 habitats from Sentinel-2 optical data. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1017-1032. doi: 10.3934/dcdss.2020348

[13]

Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077

 Impact Factor: 

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]