• Previous Article
    Optimizing the stable behavior of parameter-dependent dynamical systems --- maximal domains of attraction, minimal absorption times
  • JCD Home
  • This Issue
  • Next Article
    Optimal control of multiscale systems using reduced-order models
June  2014, 1(2): 307-338. doi: 10.3934/jcd.2014.1.307

Lattice structures for attractors I

1. 

Department of Mathematical Sciences, Florida Atlantic University, 777 Glades Road, 33431 Boca Raton

2. 

Rutgers University, 110 Frelinghusen Road, Piscataway, NJ 08854

3. 

VU University, De Boelelaan 1081a, 1081 HV, Amsterdam, Netherlands

Received  July 2013 Revised  December 2013 Published  December 2014

We describe the basic lattice structures of attractors and repellers in dynamical systems. The structure of distributive lattices allows for an algebraic treatment of gradient-like dynamics in general dynamical systems, both invertible and noninvertible. We separate those properties which rely solely on algebraic structures from those that require some topological arguments, in order to lay a foundation for the development of algorithms to manipulate these structures computationally.
Citation: William D. Kalies, Konstantin Mischaikow, Robert C.A.M. Vandervorst. Lattice structures for attractors I. Journal of Computational Dynamics, 2014, 1 (2) : 307-338. doi: 10.3934/jcd.2014.1.307
References:
[1]

E. Akin, The General Topology of Dynamical Systems, vol. 1 of Graduate Studies in Mathematics,, American Mathematical Society, (1993).   Google Scholar

[2]

Z. Arai, W. D. Kalies, H. Kokubu, K. Mischaikow, H. Oka and P. Pilarczyk, A database schema for the analysis of global dynamics of multiparameter systems,, SIAM J. Appl. Dyn. Syst., 8 (2009), 757.  doi: 10.1137/080734935.  Google Scholar

[3]

K. A. Baker and A. W. Hales, Distributive projective lattices,, Canad. J. Math., 22 (1970), 472.  doi: 10.4153/CJM-1970-054-0.  Google Scholar

[4]

H. Ban and W. D. Kalies, A computational approach to Conley's decomposition theorem,, J. Comp. Nonlinear Dynamics, 1 (2006), 312.  doi: 10.1115/1.2338651.  Google Scholar

[5]

J. Bush, M. Gameiro, S. Harker, H. Kokubu, K. Mischaikow, I. Obayashi and P. Pilarczyk, Combinatorial-topological framework for the analysis of global dynamics,, CHAOS, 22 (2012).  doi: 10.1063/1.4767672.  Google Scholar

[6]

C. Conley, Isolated Invariant Sets and the Morse Index, vol. 38 of CBMS Regional Conference Series in Mathematics,, American Mathematical Society, (1978).   Google Scholar

[7]

B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, 2nd edition,, Cambridge University Press, (2002).  doi: 10.1017/CBO9780511809088.  Google Scholar

[8]

R. Franzosa, Index filtrations and the homology index braid for partially ordered Morse decompositions,, Trans. Amer. Math. Soc., 298 (1986), 193.  doi: 10.1090/S0002-9947-1986-0857439-7.  Google Scholar

[9]

R. D. Franzosa and K. Mischaikow, The connection matrix theory for semiflows on (not necessarily locally compact) metric spaces,, J. Differential Equations, 71 (1988), 270.  doi: 10.1016/0022-0396(88)90028-9.  Google Scholar

[10]

R. Freese and J. B. Nation, Projective lattices,, Pacific J. Math., 75 (1978), 93.  doi: 10.2140/pjm.1978.75.93.  Google Scholar

[11]

G. Grätzer, Lattice Theory: Foundation,, Birkhäuser/Springer Basel AG, (2011).  doi: 10.1007/978-3-0348-0018-1.  Google Scholar

[12]

W. Kalies, K. Mischaikow and R. C. Vandervorst, An algorithmic approach to chain recurrence,, Found. Comput. Math., 5 (2005), 409.  doi: 10.1007/s10208-004-0163-9.  Google Scholar

[13]

W. Kalies, K. Mischaikow and R. C. Vandervorst, Lattice structures for attractors II,, Submitted for publication, ().   Google Scholar

[14]

E. Liz and P. Pilarczyk, Global dynamics in a stage-structured discrete-time population model with harvesting,, J. Theoret. Biol., 297 (2012), 148.  doi: 10.1016/j.jtbi.2011.12.012.  Google Scholar

[15]

F. Miraglia, An Introduction to Partially Ordered Structures and Sheaves, vol. 1 of Contemporary Logic Series,, Polimetrica Scientific Publisher, (2006).   Google Scholar

[16]

J. W. Robbin and D. A. Salamon, Lyapunov maps, simplicial complexes and the Stone functor,, Ergodic Theory Dynam. Systems, 12 (1992), 153.  doi: 10.1017/S0143385700006647.  Google Scholar

[17]

C. Robinson, Dynamical Systems, 2nd edition,, Studies in Advanced Mathematics, (1999).   Google Scholar

[18]

S. Roman, Lattices and Ordered Sets,, Springer, (2008).   Google Scholar

[19]

S. Vickers, Topology via Logic, vol. 5 of Cambridge Tracts in Theoretical Computer Science,, Cambridge University Press, (1989).   Google Scholar

show all references

References:
[1]

E. Akin, The General Topology of Dynamical Systems, vol. 1 of Graduate Studies in Mathematics,, American Mathematical Society, (1993).   Google Scholar

[2]

Z. Arai, W. D. Kalies, H. Kokubu, K. Mischaikow, H. Oka and P. Pilarczyk, A database schema for the analysis of global dynamics of multiparameter systems,, SIAM J. Appl. Dyn. Syst., 8 (2009), 757.  doi: 10.1137/080734935.  Google Scholar

[3]

K. A. Baker and A. W. Hales, Distributive projective lattices,, Canad. J. Math., 22 (1970), 472.  doi: 10.4153/CJM-1970-054-0.  Google Scholar

[4]

H. Ban and W. D. Kalies, A computational approach to Conley's decomposition theorem,, J. Comp. Nonlinear Dynamics, 1 (2006), 312.  doi: 10.1115/1.2338651.  Google Scholar

[5]

J. Bush, M. Gameiro, S. Harker, H. Kokubu, K. Mischaikow, I. Obayashi and P. Pilarczyk, Combinatorial-topological framework for the analysis of global dynamics,, CHAOS, 22 (2012).  doi: 10.1063/1.4767672.  Google Scholar

[6]

C. Conley, Isolated Invariant Sets and the Morse Index, vol. 38 of CBMS Regional Conference Series in Mathematics,, American Mathematical Society, (1978).   Google Scholar

[7]

B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, 2nd edition,, Cambridge University Press, (2002).  doi: 10.1017/CBO9780511809088.  Google Scholar

[8]

R. Franzosa, Index filtrations and the homology index braid for partially ordered Morse decompositions,, Trans. Amer. Math. Soc., 298 (1986), 193.  doi: 10.1090/S0002-9947-1986-0857439-7.  Google Scholar

[9]

R. D. Franzosa and K. Mischaikow, The connection matrix theory for semiflows on (not necessarily locally compact) metric spaces,, J. Differential Equations, 71 (1988), 270.  doi: 10.1016/0022-0396(88)90028-9.  Google Scholar

[10]

R. Freese and J. B. Nation, Projective lattices,, Pacific J. Math., 75 (1978), 93.  doi: 10.2140/pjm.1978.75.93.  Google Scholar

[11]

G. Grätzer, Lattice Theory: Foundation,, Birkhäuser/Springer Basel AG, (2011).  doi: 10.1007/978-3-0348-0018-1.  Google Scholar

[12]

W. Kalies, K. Mischaikow and R. C. Vandervorst, An algorithmic approach to chain recurrence,, Found. Comput. Math., 5 (2005), 409.  doi: 10.1007/s10208-004-0163-9.  Google Scholar

[13]

W. Kalies, K. Mischaikow and R. C. Vandervorst, Lattice structures for attractors II,, Submitted for publication, ().   Google Scholar

[14]

E. Liz and P. Pilarczyk, Global dynamics in a stage-structured discrete-time population model with harvesting,, J. Theoret. Biol., 297 (2012), 148.  doi: 10.1016/j.jtbi.2011.12.012.  Google Scholar

[15]

F. Miraglia, An Introduction to Partially Ordered Structures and Sheaves, vol. 1 of Contemporary Logic Series,, Polimetrica Scientific Publisher, (2006).   Google Scholar

[16]

J. W. Robbin and D. A. Salamon, Lyapunov maps, simplicial complexes and the Stone functor,, Ergodic Theory Dynam. Systems, 12 (1992), 153.  doi: 10.1017/S0143385700006647.  Google Scholar

[17]

C. Robinson, Dynamical Systems, 2nd edition,, Studies in Advanced Mathematics, (1999).   Google Scholar

[18]

S. Roman, Lattices and Ordered Sets,, Springer, (2008).   Google Scholar

[19]

S. Vickers, Topology via Logic, vol. 5 of Cambridge Tracts in Theoretical Computer Science,, Cambridge University Press, (1989).   Google Scholar

[1]

Darko Dimitrov, Hosam Abdo. Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 711-721. doi: 10.3934/dcdss.2019045

[2]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[3]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[4]

Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020295

[5]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[6]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[7]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[8]

François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221

[9]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[10]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[11]

Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020409

[12]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[13]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[14]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

[15]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020395

[16]

Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2021001

[17]

Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172

[18]

Hong Fu, Mingwu Liu, Bo Chen. Supplier's investment in manufacturer's quality improvement with equity holding. Journal of Industrial & Management Optimization, 2021, 17 (2) : 649-668. doi: 10.3934/jimo.2019127

[19]

Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[20]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

 Impact Factor: 

Metrics

  • PDF downloads (70)
  • HTML views (0)
  • Cited by (4)

[Back to Top]