Citation: |
[1] |
E. J. Davison and E. M. Kurak, A computational method for determining quadratic Lyapunov functions for non-linear systems, Automatica, 7 (1971), 627-636, URL http://www.sciencedirect.com/science/article/pii/0005109871900276.doi: 10.1016/0005-1098(71)90027-6. |
[2] |
M. Dellnitz and A. Hohmann, A subdivision algorithm for the computation of unstable manifolds and global attractors, Numerische Mathematik, 75 (1997), 293-317.doi: 10.1007/s002110050240. |
[3] |
M. Dellnitz and O. Junge, An adaptive subdivision technique for the approximation of attractors and invariant measures, Comput. Visual. Sci., 1 (1998), 63-68.doi: 10.1007/s007910050006. |
[4] |
H. Flashner and R. S. Guttalu, A computational approach for studying domains of attraction for non-linear systems, Int. J. Non-Linear Mech., 23 (1988), 279-295.doi: 10.1016/0020-7462(88)90026-1. |
[5] |
G. Froyland, O. Junge and P. Koltai, Estimating long term behavior of flows without trajectory integration: the infinitesimal generator approach, SIAM J. Numer. Anal., 51 (2013), 223-247.doi: 10.1137/110819986. |
[6] |
R. Genesio, M. Tartaglia and A. Vicino, On the estimation of asymptotic stability regions: State of the art and new proposals, Automatic Control, IEEE Transactions on, 30 (1985), 747-755.doi: 10.1109/TAC.1985.1104057. |
[7] |
P. Giesl, On the determination of the basin of attraction of periodic orbits in three- and higher-dimensional systems, J. Math. Anal. Appl., 354 (2009), 606-618.doi: 10.1016/j.jmaa.2009.01.027. |
[8] |
S. Goldschmidt, N. Neumann and J. Wallaschek, On the application of set-oriented numerical methods in the analysis of railway vehicle dynamics, in ECCOMAS 2004, 2004. |
[9] |
L. Grüne, Subdivision techniques for the computation of domains of attraction and reachable sets, in NOLCOS 2001, (2001), 762-767. |
[10] |
W. Hahn, Stability of Motion, Springer-Verlag, Berlin, 1967. |
[11] |
C. S. Hsu, A theory of cell-to-cell mapping dynamical systems, SME J. appl. Mech., 47 (1980), 931-939.doi: 10.1115/1.3153816. |
[12] |
C. S. Hsu and R. S. Guttalu, An unravelling algorithm for global analysis of dynamical systems: an application of cell-to-cell mappings, ASME J. appl. Mech., 47 (1980), 940-948.doi: 10.1115/1.3153817. |
[13] |
P. Koltai, Efficient Approximation Methods for the Global Long-Term Behavior of Dynamical Systems - Theory, Algorithms and Examples, PhD thesis, Technische Universität München, 2010. |
[14] |
P. Koltai, A stochastic approach for computing the domain of attraction without trajectory simulation, Disc. Cont. Dynam. Sys., Supplement, II (2011), 854-863. |
[15] |
H. J. Kushner, Probability Methods for Approximations in Stochastic Control and for Elliptic Equations, Academic Press, New York, 1977. |
[16] |
H. J. Kushner and P. Dupuis, Numerical Methods for Stochastic Control Problems in Continuous Time, 2nd edition, Springer-Verlag, New York, 1992.doi: 10.1007/978-1-4684-0441-8. |
[17] |
J. P. LaSalle and S. Lefschetz, Stability by Liapunov's Direct Method with Applications, Mathematics in science and engineering, Academic Press, 1961, URL http://books.google.de/books?id=UsU-AAAAIAAJ. |
[18] |
R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002.doi: 10.1017/CBO9780511791253. |
[19] |
D.-C. Liaw and C.-H. Lee, An approach to estimate domain of attraction for nonlinear control systems, Proceedings of the First International Conference on Innovative Computing, Information and Control. |
[20] |
Y. Nesterov, A method for unconstrained convex minimization problem with the rate of convergence $o(1/k^2)$, Doklady AN SSSR (translated as Soviet Math. Docl.), 269 (1983), 543-547. |
[21] | |
[22] |
D. N. Shields and C. Storey, The behaviour of optimal Lyapunov functions, International Journal of Control, 21 (1975), 561-573, URL http://www.tandfonline.com/doi/abs/10.1080/00207177508922012.doi: 10.1080/00207177508922012. |
[23] |
D. M. Walker, The expected time until absorption when absorption is not certain, J. Appl. Prob., 35 (1998), 812-823.doi: 10.1239/jap/1032438377. |
[24] |
V. I. Zubov, Methods of A.M. Lyapunov and Their Application, P. Noordhoff, Groningen, 1964. |