-
Previous Article
Polynomial chaos based uncertainty quantification in Hamiltonian, multi-time scale, and chaotic systems
- JCD Home
- This Issue
-
Next Article
Lattice structures for attractors I
Optimizing the stable behavior of parameter-dependent dynamical systems --- maximal domains of attraction, minimal absorption times
1. | Freie Universität Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195 Berlin, Germany |
2. | Klinikum rechts der Isar der Technischen Universität München, Dept. of Plastic and Reconstructive Surgery, Ismaninger Straße 22, München, Germany |
References:
[1] |
E. J. Davison and E. M. Kurak, A computational method for determining quadratic Lyapunov functions for non-linear systems,, Automatica, 7 (1971), 627.
doi: 10.1016/0005-1098(71)90027-6. |
[2] |
M. Dellnitz and A. Hohmann, A subdivision algorithm for the computation of unstable manifolds and global attractors,, Numerische Mathematik, 75 (1997), 293.
doi: 10.1007/s002110050240. |
[3] |
M. Dellnitz and O. Junge, An adaptive subdivision technique for the approximation of attractors and invariant measures,, Comput. Visual. Sci., 1 (1998), 63.
doi: 10.1007/s007910050006. |
[4] |
H. Flashner and R. S. Guttalu, A computational approach for studying domains of attraction for non-linear systems,, Int. J. Non-Linear Mech., 23 (1988), 279.
doi: 10.1016/0020-7462(88)90026-1. |
[5] |
G. Froyland, O. Junge and P. Koltai, Estimating long term behavior of flows without trajectory integration: the infinitesimal generator approach,, SIAM J. Numer. Anal., 51 (2013), 223.
doi: 10.1137/110819986. |
[6] |
R. Genesio, M. Tartaglia and A. Vicino, On the estimation of asymptotic stability regions: State of the art and new proposals,, Automatic Control, 30 (1985), 747.
doi: 10.1109/TAC.1985.1104057. |
[7] |
P. Giesl, On the determination of the basin of attraction of periodic orbits in three- and higher-dimensional systems,, J. Math. Anal. Appl., 354 (2009), 606.
doi: 10.1016/j.jmaa.2009.01.027. |
[8] |
S. Goldschmidt, N. Neumann and J. Wallaschek, On the application of set-oriented numerical methods in the analysis of railway vehicle dynamics,, in ECCOMAS 2004, (2004). Google Scholar |
[9] |
L. Grüne, Subdivision techniques for the computation of domains of attraction and reachable sets,, in NOLCOS 2001, (2001), 762. Google Scholar |
[10] |
W. Hahn, Stability of Motion,, Springer-Verlag, (1967).
|
[11] |
C. S. Hsu, A theory of cell-to-cell mapping dynamical systems,, SME J. appl. Mech., 47 (1980), 931.
doi: 10.1115/1.3153816. |
[12] |
C. S. Hsu and R. S. Guttalu, An unravelling algorithm for global analysis of dynamical systems: an application of cell-to-cell mappings,, ASME J. appl. Mech., 47 (1980), 940.
doi: 10.1115/1.3153817. |
[13] |
P. Koltai, Efficient Approximation Methods for the Global Long-Term Behavior of Dynamical Systems - Theory, Algorithms and Examples,, PhD thesis, (2010). Google Scholar |
[14] |
P. Koltai, A stochastic approach for computing the domain of attraction without trajectory simulation,, Disc. Cont. Dynam. Sys., II (2011), 854.
|
[15] |
H. J. Kushner, Probability Methods for Approximations in Stochastic Control and for Elliptic Equations,, Academic Press, (1977).
|
[16] |
H. J. Kushner and P. Dupuis, Numerical Methods for Stochastic Control Problems in Continuous Time,, 2nd edition, (1992).
doi: 10.1007/978-1-4684-0441-8. |
[17] |
J. P. LaSalle and S. Lefschetz, Stability by Liapunov's Direct Method with Applications,, Mathematics in science and engineering, (1961). Google Scholar |
[18] |
R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems,, Cambridge University Press, (2002).
doi: 10.1017/CBO9780511791253. |
[19] |
D.-C. Liaw and C.-H. Lee, An approach to estimate domain of attraction for nonlinear control systems,, Proceedings of the First International Conference on Innovative Computing, (). Google Scholar |
[20] |
Y. Nesterov, A method for unconstrained convex minimization problem with the rate of convergence $o(1/k^2)$,, Doklady AN SSSR (translated as Soviet Math. Docl.), 269 (1983), 543.
|
[21] |
J. R. Norris, Markov Chains,, Cambridge Univ. Press, (1998).
|
[22] |
D. N. Shields and C. Storey, The behaviour of optimal Lyapunov functions,, International Journal of Control, 21 (1975), 561.
doi: 10.1080/00207177508922012. |
[23] |
D. M. Walker, The expected time until absorption when absorption is not certain,, J. Appl. Prob., 35 (1998), 812.
doi: 10.1239/jap/1032438377. |
[24] |
V. I. Zubov, Methods of A.M. Lyapunov and Their Application,, P. Noordhoff, (1964).
|
show all references
References:
[1] |
E. J. Davison and E. M. Kurak, A computational method for determining quadratic Lyapunov functions for non-linear systems,, Automatica, 7 (1971), 627.
doi: 10.1016/0005-1098(71)90027-6. |
[2] |
M. Dellnitz and A. Hohmann, A subdivision algorithm for the computation of unstable manifolds and global attractors,, Numerische Mathematik, 75 (1997), 293.
doi: 10.1007/s002110050240. |
[3] |
M. Dellnitz and O. Junge, An adaptive subdivision technique for the approximation of attractors and invariant measures,, Comput. Visual. Sci., 1 (1998), 63.
doi: 10.1007/s007910050006. |
[4] |
H. Flashner and R. S. Guttalu, A computational approach for studying domains of attraction for non-linear systems,, Int. J. Non-Linear Mech., 23 (1988), 279.
doi: 10.1016/0020-7462(88)90026-1. |
[5] |
G. Froyland, O. Junge and P. Koltai, Estimating long term behavior of flows without trajectory integration: the infinitesimal generator approach,, SIAM J. Numer. Anal., 51 (2013), 223.
doi: 10.1137/110819986. |
[6] |
R. Genesio, M. Tartaglia and A. Vicino, On the estimation of asymptotic stability regions: State of the art and new proposals,, Automatic Control, 30 (1985), 747.
doi: 10.1109/TAC.1985.1104057. |
[7] |
P. Giesl, On the determination of the basin of attraction of periodic orbits in three- and higher-dimensional systems,, J. Math. Anal. Appl., 354 (2009), 606.
doi: 10.1016/j.jmaa.2009.01.027. |
[8] |
S. Goldschmidt, N. Neumann and J. Wallaschek, On the application of set-oriented numerical methods in the analysis of railway vehicle dynamics,, in ECCOMAS 2004, (2004). Google Scholar |
[9] |
L. Grüne, Subdivision techniques for the computation of domains of attraction and reachable sets,, in NOLCOS 2001, (2001), 762. Google Scholar |
[10] |
W. Hahn, Stability of Motion,, Springer-Verlag, (1967).
|
[11] |
C. S. Hsu, A theory of cell-to-cell mapping dynamical systems,, SME J. appl. Mech., 47 (1980), 931.
doi: 10.1115/1.3153816. |
[12] |
C. S. Hsu and R. S. Guttalu, An unravelling algorithm for global analysis of dynamical systems: an application of cell-to-cell mappings,, ASME J. appl. Mech., 47 (1980), 940.
doi: 10.1115/1.3153817. |
[13] |
P. Koltai, Efficient Approximation Methods for the Global Long-Term Behavior of Dynamical Systems - Theory, Algorithms and Examples,, PhD thesis, (2010). Google Scholar |
[14] |
P. Koltai, A stochastic approach for computing the domain of attraction without trajectory simulation,, Disc. Cont. Dynam. Sys., II (2011), 854.
|
[15] |
H. J. Kushner, Probability Methods for Approximations in Stochastic Control and for Elliptic Equations,, Academic Press, (1977).
|
[16] |
H. J. Kushner and P. Dupuis, Numerical Methods for Stochastic Control Problems in Continuous Time,, 2nd edition, (1992).
doi: 10.1007/978-1-4684-0441-8. |
[17] |
J. P. LaSalle and S. Lefschetz, Stability by Liapunov's Direct Method with Applications,, Mathematics in science and engineering, (1961). Google Scholar |
[18] |
R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems,, Cambridge University Press, (2002).
doi: 10.1017/CBO9780511791253. |
[19] |
D.-C. Liaw and C.-H. Lee, An approach to estimate domain of attraction for nonlinear control systems,, Proceedings of the First International Conference on Innovative Computing, (). Google Scholar |
[20] |
Y. Nesterov, A method for unconstrained convex minimization problem with the rate of convergence $o(1/k^2)$,, Doklady AN SSSR (translated as Soviet Math. Docl.), 269 (1983), 543.
|
[21] |
J. R. Norris, Markov Chains,, Cambridge Univ. Press, (1998).
|
[22] |
D. N. Shields and C. Storey, The behaviour of optimal Lyapunov functions,, International Journal of Control, 21 (1975), 561.
doi: 10.1080/00207177508922012. |
[23] |
D. M. Walker, The expected time until absorption when absorption is not certain,, J. Appl. Prob., 35 (1998), 812.
doi: 10.1239/jap/1032438377. |
[24] |
V. I. Zubov, Methods of A.M. Lyapunov and Their Application,, P. Noordhoff, (1964).
|
[1] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[2] |
Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170 |
[3] |
Hai-Yang Jin, Zhi-An Wang. Global stabilization of the full attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3509-3527. doi: 10.3934/dcds.2020027 |
[4] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[5] |
Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048 |
[6] |
Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292 |
[7] |
Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315 |
[8] |
Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 |
[9] |
Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1223-1241. doi: 10.3934/dcdsb.2020251 |
[10] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[11] |
Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020400 |
[12] |
Yuxi Zheng. Absorption of characteristics by sonic curve of the two-dimensional Euler equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 605-616. doi: 10.3934/dcds.2009.23.605 |
[13] |
Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103 |
[14] |
Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216 |
[15] |
Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020341 |
[16] |
Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial & Management Optimization, 2021, 17 (2) : 575-599. doi: 10.3934/jimo.2019124 |
[17] |
Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020 |
[18] |
Guangbin CAI, Yang Zhao, Wanzhen Quan, Xiusheng Zhang. Design of LPV fault-tolerant controller for hypersonic vehicle based on state observer. Journal of Industrial & Management Optimization, 2021, 17 (1) : 447-465. doi: 10.3934/jimo.2019120 |
[19] |
Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030 |
[20] |
Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]