Citation: |
[1] |
M. S. Allen and J. A. Camberos, Comparison of uncertainty propagation / response surface techniques for two aeroelastic systems, in 50th AIAA Structures, Structural Dynamics, and Materials Conference, Palm Springs, California, May 4-7, 2009, 2009.doi: 10.2514/6.2009-2269. |
[2] |
G. Blatman and B. Sudret, An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis, Probabilistic Engineering Mechanics, 25 (2010), 183-197.doi: 10.1016/j.probengmech.2009.10.003. |
[3] |
G. Blatman and B. Sudret, Adaptive sparse polynomial chaos expansion based on least angle regression, Journal of Computational Physics, 230 (2011), 2345-2367.doi: 10.1016/j.jcp.2010.12.021. |
[4] |
J. Bucklew, Introduction to Rare Event Simulation, Springer, 2004.doi: 10.1007/978-1-4757-4078-3. |
[5] |
R. E. Caflisch, Monte Carlo and quasi-Monte Carlo methods, Acta Numerica, 7 (1998), 1-49.doi: 10.1017/S0962492900002804. |
[6] |
R. H. Cameron and W. T. Martin, The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals, Annals of Mathematics, 48 (1947), 385-392.doi: 10.2307/1969178. |
[7] |
C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice Hall, 1971. |
[8] |
S. E. Geneser, R. M. Kirby and F. B. Sachse, Sensitivity analysis of cardiac electrophysiological models using polynomial chaos, in Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the, IEEE, (2006), 4042-4045.doi: 10.1109/IEMBS.2005.1615349. |
[9] |
R. Ghanem, Probabilistic characterization of transport in heterogeneous media, Comput. Methods Appl. Mech. Engng., 158 (1998), 199-220.doi: 10.1016/S0045-7825(97)00250-8. |
[10] |
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, vol. 42, Springer-Verlag New York, 1983.doi: 10.1007/978-1-4612-1140-2. |
[11] |
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, vol. 31, Springer, 2006. |
[12] |
T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning, 2nd edition, Springer, 2009.doi: 10.1007/978-0-387-84858-7. |
[13] |
M. He, S. Murugesan and J. Zhang, Multiple timescale dispatch and scheduling for stochastic reliability in smart grids with wind generation integration, in Proceedings of the IEEE INFOCOM, April 10-15, 2011, Shanghai, China, 2011.doi: 10.1109/INFCOM.2011.5935204. |
[14] |
P. Holmes, J. L. Lumley and G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press, 1996.doi: 10.1017/CBO9780511622700. |
[15] |
B. Huberman and J. P. Crutchfield, Chaotic states of anharmonic systems in periodic fields, Phys. Rev. Lett., 43 (1979), 1743-1747.doi: 10.1103/PhysRevLett.43.1743. |
[16] |
S. Klus, T. Sahai, C. Liu and M. Dellnitz, An efficient algorithm for the parallel solution of high-dimensional differential equations, J. Comput. Appl. Math., 235 (2011), 3053-3062.doi: 10.1016/j.cam.2010.12.026. |
[17] |
B. Kouchmeshky and N. Zabaras, The effect of multiple sources of uncertainty on the convex hull of material properties of polycrystals, Computational Materials Science, 47 (2009), 342-352.doi: 10.1016/j.commatsci.2009.08.010. |
[18] |
J. Laskar, Large-scale chaos in the solar system, Astronomy and Astrophysics, 287 (1994), L9-L12. |
[19] |
R. L. Liboff, Kinetic Theory: Classical, Quantum, and Relativistic Descriptions, 2nd edition, Wiley Interscience, 1998. |
[20] |
E. N. Lorenz, Deterministic nonperiodic flow, Journal of the atmospheric sciences, 20 (1963), 130-141.doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2. |
[21] |
X. Ma and N. Zabaras, An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations, Journal of Computational Physics, 228 (2009), 3084-3113.doi: 10.1016/j.jcp.2009.01.006. |
[22] |
X. Ma and N. Zabaras, Kernel principal component analysis for stochastic input model generation, Journal of Computational Physics, 230 (2011), 7311-7331.doi: 10.1016/j.jcp.2011.05.037. |
[23] |
Y. M. Marzouk and H. N. Najm, Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems, Journal of Computational Physics, 228 (2009), 1862-1902.doi: 10.1016/j.jcp.2008.11.024. |
[24] |
R. H. Myers, D. C. Montgomery and C. M. Anderson-Cook, Response Surface Methodology, 3rd edition, Wiley, 2009. |
[25] |
H. N. Najm, B. J. Debusschere, Y. M. Marzouk, S. Widmer and O. P. Le Maìtre, Uncertainty quantification in chemical systems, Int. J. Numer. Meth. Engng., 80 (2009), 789-814.doi: 10.1002/nme.2551. |
[26] |
H. Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers, Bulletin of the American Mathematical Society, 84 (1978), 957-1041.doi: 10.1090/S0002-9904-1978-14532-7. |
[27] |
F. Nobile, R. Tempone and C. G. Webster, A sparse grid stochastic collocation method for partial differential equations with randon input data, SIAM J. Numer. Anal., 46 (2008), 2309-2345.doi: 10.1137/060663660. |
[28] |
H. Ogura, Orthogonal functions of the Poisson processes, IEEE Transactions on Information Theory, 18 (1972), 473-481.doi: 10.1109/TIT.1972.1054856. |
[29] |
P. Parpas and M. Webster, A stochastic multiscale model for electricity generation capacity expansion, Eur. J. Oper. Res., 232 (2014), 359-374.doi: 10.1016/j.ejor.2013.07.022. |
[30] |
R. H. Rand, Lecture Notes on Nonlinear Vibrations, Internet-First University Press, 2012, URL http://hdl.handle.net/1813/28989. |
[31] |
T. Sahai, V. Fonoberov and S. Loire, Uncertainty as a stabilizer of the head-tail ordered phase in carbon-monoxide monolayers on graphite, Physical Review B, 80 (2009), 115413.doi: 10.1103/PhysRevB.80.115413. |
[32] |
T. Sahai, Backbone transitions and invariant tori in forced micromechanical oscillators with optical detection, Nonlinear Dynamics, 62 (2010), 273-289.doi: 10.1007/s11071-010-9716-4. |
[33] |
T. Sahai, R. B. Bhiladvala and A. T. Zehnder, Thermomechanical transitions in doubly-clamped micro-oscillators, International Journal of Non-Linear Mechanics, 42 (2007), 596-607.doi: 10.1016/j.ijnonlinmec.2006.12.009. |
[34] |
T. Sahai and J. M. Pasini, Uncertainty quantification in hybrid dynamical systems, J. Comput. Phys., 237 (2013), 411-427.doi: 10.1016/j.jcp.2012.10.030. |
[35] |
T. Sahai, A. Speranzon and A. Banaszuk, Hearing the clusters in a graph: A dristributed algorithm, Automatica, 48 (2012), 15-24.doi: 10.1016/j.automatica.2011.09.019. |
[36] |
T. Sahai and A. T. Zehnder, Modeling of coupled dome-shaped microoscillators, Microelectromechanical Systems, Journal of, 17 (2008), 777-786.doi: 10.1109/JMEMS.2008.924844. |
[37] |
S. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering, Perseus Books Group, 2001. |
[38] |
A. Surana, T. Sahai and A. Banaszuk, Iterative methods for scalable uncertainty quantification in complex networks, International Journal for Uncertainty Quantification, 2 (2012), 413-439.doi: 10.1615/Int.J.UncertaintyQuantification.2012004138. |
[39] |
Y. Susuki, I. Mezić and T. Hikihara, Coherent swing instability of power grids, J. Nonlinear Sci., 21 (2011), 403-439.doi: 10.1007/s00332-010-9087-5. |
[40] |
G. Szegö, Orthogonal Polynomials, vol. 23, Amer Mathematical Society, 1967. |
[41] |
Y. Ueda, Explosion of strange attractors exhibited by Duffing's equation, in Nonlinear Dynamics (ed. R. H. G. Hellerman), New York Academy of Sciences, New York, 357 (1980), 422-434.doi: 10.1111/j.1749-6632.1980.tb29708.x. |
[42] |
X. Wan and G. E. Karniadakis, Beyond Wiener-Askey expansions: Handling arbitrary PDFs, Journal of Scientific Computing, 27 (2006), 455-464.doi: 10.1007/s10915-005-9038-8. |
[43] |
X. Wan and G. E. Karniadakis, Recent advances in polynomial chaos methods and extensions, in Computational Uncertainty in Military Vehicle Design Meeting Proceedings, NATO/OTAN, Paper Reference Number: RTO-MP-IST-999, 2008. |
[44] |
X. Wan and G. E. Karniadakis, Long-term behavior of polynomial chaos in stochastic flow simulations, Computer methods in applied mechanics and engineering, 195 (2006), 5582-5596.doi: 10.1016/j.cma.2005.10.016. |
[45] |
C. G. Webster, Sparse Grid Stochastic Collocation Techniques for the Numerical Solution of Partial Differential Equations with Random Input Data, PhD thesis, Florida State University, 2007. |
[46] |
N. Wiener, The homogeneous chaos, American Journal of Mathematics, 60 (1938), 897-936.doi: 10.2307/2371268. |
[47] |
D. Xiu and G. E. Karniadakis, Modeling uncertainty in flow simulations via generalized polynomial chaos, J. Comp. Phys., 187 (2003), 137-167.doi: 10.1016/S0021-9991(03)00092-5. |
[48] |
N. Zabaras and B. Ganapathysubramanian, A scalable framework for the solution of stochastic inverse problems using a sparse grid collocation approach, J. Comput. Phys., 227 (2008), 4697-4735.doi: 10.1016/j.jcp.2008.01.019. |