-
Previous Article
Symmetry exploiting control of hybrid mechanical systems
- JCD Home
- This Issue
-
Next Article
Preface: Special issue on the occasion of the 4th International Workshop on Set-Oriented Numerics (SON 13, Dresden, 2013)
Modularity of directed networks: Cycle decomposition approach
1. | Freie Universität Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195 Berlin, Germany, Germany |
References:
[1] |
B. Altaner, S. Grosskinsky, S. Herminghaus, L. Katthän, M. Timme and J. Vollmer, Network representations of nonequilibrium steady states: Cycle decompositions, symmetries, and dominant paths,, Phys. Rev. E, 85 (2012).
doi: 10.1103/PhysRevE.85.041133. |
[2] |
A. Arenas, J. Duch, A. Fernández and S. Gómez, Size reduction of complex networks preserving modularity,, New Journal of Physics, 9 (2007).
doi: 10.1088/1367-2630/9/6/176. |
[3] |
R. Banisch and N. D. Conrad, Cycle-flow based module detection in directed recurrence networks,, EPL (Europhysics Letters), 108 (2014), 0295.
doi: 10.1209/0295-5075/108/68008. |
[4] |
A. Barrat, M. Barthelemy, R. Pastor-Satorras and A. Vespignani, The architecture of complex weighted networks,, Proceedings of the National Academy of Sciences of the United States of America, 101 (2004), 3747.
doi: 10.1073/pnas.0400087101. |
[5] |
G. R. Bowman and V. S. Pande and F. Noé, editors, An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation,, volume 797 of Advances in Experimental Medicine and Biology, (2014).
doi: 10.1007/978-94-007-7606-7_11. |
[6] |
J. Chen and B. Yuan, Detecting functional modules in the yeast protein-protein interaction network,, Bioinformatics, 22 (2006), 2283.
doi: 10.1093/bioinformatics/btl370. |
[7] |
D. Cvetkovic, P. Rowlinson and S. Simic, Spectral Generalizations of Line Graphs,, Cambridge University Press, (2004).
doi: 10.1017/CBO9780511751752. |
[8] |
P. Deuflhard and M. Weber, Robust perron cluster analysis in conformation dynamics,, Linear Algebra and its Applications, 398 (2005), 161.
doi: 10.1016/j.laa.2004.10.026. |
[9] |
N. Djurdjevac, S. Bruckner, T. O. F. Conrad and C. Schütte, Random walks on complex modular networks,, Journal of Numerical Analysis, 6 (2011), 29.
|
[10] |
N. Djurdjevac, M. Sarich and C. Schütte, Estimating the eigenvalue error of markov state models,, Multiscale Modeling & Simulation, 10 (2012), 61.
doi: 10.1137/100798910. |
[11] |
T. S. Evans and R. Lambiotte, Line graphs, link partitions, and overlapping communities,, Phys. Rev. E, 80 (2009).
doi: 10.1103/PhysRevE.80.016105. |
[12] |
S. Fortunato, Community detection in graphs,, Physics Reports, 486 (2010), 75.
doi: 10.1016/j.physrep.2009.11.002. |
[13] |
M. Girvan and M. Newman, Community structure in social and biological networks,, Proceedings of the National Academy of Sciences of the United States of America, 99 (2002), 7821.
doi: 10.1073/pnas.122653799. |
[14] |
D. Jiang, M. Qian and M.-P. Quian, Mathematical Theory of Nonequilibrium Steady States: On the Frontier of Probability and Dynamical Systems,, Springer, (2004).
doi: 10.1007/b94615. |
[15] |
S. L. Kalpazidou, Cycle Representations of Markov Processes,, Springer, (2006).
|
[16] |
Y. Kim, S.-W. Son and H. Jeong, Finding communities in directed networks,, Phys. Rev. E, 81 (2010).
doi: 10.1103/PhysRevE.81.016103. |
[17] |
R. Lambiotte, J. C. Delvenne and M. Barahona, Laplacian dynamics and multiscale modular structure in networks,, ArXiv., (). Google Scholar |
[18] |
A. Lancichinetti and S. Fortunato, Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities,, Phys. Rev. E, 80 (2009).
doi: 10.1103/PhysRevE.80.016118. |
[19] |
A. Lancichinetti, F. Radicchi, J. J. Ramasco and S. Fortunato, Finding statistically significant communities in networks,, PLoS ONE, 6 (2011).
doi: 10.1371/journal.pone.0018961. |
[20] |
E. A. Leicht and M. E. J. Newman, Community structure in directed networks,, Phys. Rev. Lett., 100 (2008).
doi: 10.1103/PhysRevLett.100.118703. |
[21] |
T. Li, J. Liu and W. E, Probabilistic framework for network partition,, Phys. Rev. E, 80 (2009).
doi: 10.1103/PhysRevE.80.026106. |
[22] |
F. D. Malliaros and M. Vazirgiannis, Clustering and community detection in directed networks: A survey,, Physics Reports, 533 (2013), 95.
doi: 10.1016/j.physrep.2013.08.002. |
[23] |
J. Mattingly, A. M. Stuart and D. J. Higham, Ergodicity for SDEs and approximations: Locally Lipschitz vector fields and degenerated noise,, Stochastic Process Appl., 101 (2002), 185.
doi: 10.1016/S0304-4149(02)00150-3. |
[24] |
P. Metzner, C. Schütte and E. Vanden-Eijnden, Transition path theory for markov jump processes,, Multiscale Modeling & Simulation, 7 (2008), 1192.
doi: 10.1137/070699500. |
[25] |
M. E. J. Newman, The structure and function of complex networks,, SIAM Review, 45 (2003), 167.
doi: 10.1137/S003614450342480. |
[26] |
M. E. J. Newman, Fast algorithm for detecting community structure in networks,, Phys. Rev. E, 69 (2004).
doi: 10.1103/PhysRevE.69.066133. |
[27] |
M. E. J. Newman, Modularity and community structure in networks,, Proceedings of the National Academy of Sciences, 103 (2006), 8577.
doi: 10.1073/pnas.0601602103. |
[28] |
V. Nicosia, G. Mangioni, V. Carchiolo and M. Malgeri, Extending the definition of modularity of directed graphs with overlapping communities,, Journal of Statistical Mechanics: Theory and Experiment, 2009 (2009).
doi: 10.1088/1742-5468/2009/03/P03024. |
[29] |
P. Pakoński, G. Tanner and K. .Zyczkowski, Families of line-graphs and their quantization,, Journal of Statistical Physics, 111 (2003), 1331.
doi: 10.1023/A:1023012502046. |
[30] |
G. Palla, I. Derenyi, I. Farkas and T. Vicsek, Uncovering the overlapping community structure of complex networks in nature and society,, Nature, 435 (2005), 814.
doi: 10.1038/nature03607. |
[31] |
M. A. Porter, J.-P. Onnela and P. J. Mucha, Communities in networks,, Notices of the American Mathematical Society, 56 (2009), 1082.
|
[32] |
H. Risken, The Fokker-Planck Equation,, Springer, (1996). Google Scholar |
[33] |
M. Sarich, N. Djurdjevac, S. Bruckner, T. O. F. Conrad and C. Schütte, Modularity revisited: A novel dynamics-based concept for decomposing complex networks,, Journal of Computational Dynamics, 1 (2014), 191.
doi: 10.3934/jcd.2014.1.191. |
[34] |
M. Sarich, F. Noé and C. Schütte, On the Approximation Quality of Markov State Models,, Multiscale Modeling & Simulation, 8 (2010), 1154.
doi: 10.1137/090764049. |
[35] |
M. Sarich, C. Schütte and E. Vanden-Eijnden, Optimal fuzzy aggregation of networks,, Multiscale Modeling & Simulation, 8 (2010), 1535.
doi: 10.1137/090758519. |
[36] |
M. T. Schaub, J.-C. Delvenne, S. N. Yaliraki and M. Barahona, Markov dynamics as a zooming lens for multiscale community detection: Non clique-like communities and the field-of-view limit,, PLoS ONE, 7 (2012).
doi: 10.1371/journal.pone.0032210. |
[37] |
M. T. Schaub, R. Lambiotte and M. Barahona, Encoding dynamics for multiscale community detection: Markov time sweeping for the map equation,, Phys. Rev. E, 86 (2012).
doi: 10.1103/PhysRevE.86.026112. |
[38] |
J. Schnakenberg, Network theory of microscopic and macroscopic behavior of master equation systems,, Rev. Mod. Phys., 48 (1976), 571.
doi: 10.1103/RevModPhys.48.571. |
[39] |
Ch. Schütte and M. Sarich, Metastability and Markov State Models in Molecular Dynamics: Modeling, Analysis, Algorithmic Approaches,, volume 24 of Courant Lecture Notes, (2013).
|
[40] |
A. Viamontes Esquivel and M. Rosvall, Compression of flow can reveal overlapping-module organization in networks,, Phys. Rev. X, 1 (2011).
doi: 10.1103/PhysRevX.1.021025. |
[41] |
R. K. P. Zia and B. Schmittmann, Probability currents as principal characteristics in the statistical mechanics of non-equilibrium steady states,, Journal of Statistical Mechanics-theory and Experiment, 2007 (2007).
doi: 10.1088/1742-5468/2007/07/P07012. |
show all references
References:
[1] |
B. Altaner, S. Grosskinsky, S. Herminghaus, L. Katthän, M. Timme and J. Vollmer, Network representations of nonequilibrium steady states: Cycle decompositions, symmetries, and dominant paths,, Phys. Rev. E, 85 (2012).
doi: 10.1103/PhysRevE.85.041133. |
[2] |
A. Arenas, J. Duch, A. Fernández and S. Gómez, Size reduction of complex networks preserving modularity,, New Journal of Physics, 9 (2007).
doi: 10.1088/1367-2630/9/6/176. |
[3] |
R. Banisch and N. D. Conrad, Cycle-flow based module detection in directed recurrence networks,, EPL (Europhysics Letters), 108 (2014), 0295.
doi: 10.1209/0295-5075/108/68008. |
[4] |
A. Barrat, M. Barthelemy, R. Pastor-Satorras and A. Vespignani, The architecture of complex weighted networks,, Proceedings of the National Academy of Sciences of the United States of America, 101 (2004), 3747.
doi: 10.1073/pnas.0400087101. |
[5] |
G. R. Bowman and V. S. Pande and F. Noé, editors, An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation,, volume 797 of Advances in Experimental Medicine and Biology, (2014).
doi: 10.1007/978-94-007-7606-7_11. |
[6] |
J. Chen and B. Yuan, Detecting functional modules in the yeast protein-protein interaction network,, Bioinformatics, 22 (2006), 2283.
doi: 10.1093/bioinformatics/btl370. |
[7] |
D. Cvetkovic, P. Rowlinson and S. Simic, Spectral Generalizations of Line Graphs,, Cambridge University Press, (2004).
doi: 10.1017/CBO9780511751752. |
[8] |
P. Deuflhard and M. Weber, Robust perron cluster analysis in conformation dynamics,, Linear Algebra and its Applications, 398 (2005), 161.
doi: 10.1016/j.laa.2004.10.026. |
[9] |
N. Djurdjevac, S. Bruckner, T. O. F. Conrad and C. Schütte, Random walks on complex modular networks,, Journal of Numerical Analysis, 6 (2011), 29.
|
[10] |
N. Djurdjevac, M. Sarich and C. Schütte, Estimating the eigenvalue error of markov state models,, Multiscale Modeling & Simulation, 10 (2012), 61.
doi: 10.1137/100798910. |
[11] |
T. S. Evans and R. Lambiotte, Line graphs, link partitions, and overlapping communities,, Phys. Rev. E, 80 (2009).
doi: 10.1103/PhysRevE.80.016105. |
[12] |
S. Fortunato, Community detection in graphs,, Physics Reports, 486 (2010), 75.
doi: 10.1016/j.physrep.2009.11.002. |
[13] |
M. Girvan and M. Newman, Community structure in social and biological networks,, Proceedings of the National Academy of Sciences of the United States of America, 99 (2002), 7821.
doi: 10.1073/pnas.122653799. |
[14] |
D. Jiang, M. Qian and M.-P. Quian, Mathematical Theory of Nonequilibrium Steady States: On the Frontier of Probability and Dynamical Systems,, Springer, (2004).
doi: 10.1007/b94615. |
[15] |
S. L. Kalpazidou, Cycle Representations of Markov Processes,, Springer, (2006).
|
[16] |
Y. Kim, S.-W. Son and H. Jeong, Finding communities in directed networks,, Phys. Rev. E, 81 (2010).
doi: 10.1103/PhysRevE.81.016103. |
[17] |
R. Lambiotte, J. C. Delvenne and M. Barahona, Laplacian dynamics and multiscale modular structure in networks,, ArXiv., (). Google Scholar |
[18] |
A. Lancichinetti and S. Fortunato, Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities,, Phys. Rev. E, 80 (2009).
doi: 10.1103/PhysRevE.80.016118. |
[19] |
A. Lancichinetti, F. Radicchi, J. J. Ramasco and S. Fortunato, Finding statistically significant communities in networks,, PLoS ONE, 6 (2011).
doi: 10.1371/journal.pone.0018961. |
[20] |
E. A. Leicht and M. E. J. Newman, Community structure in directed networks,, Phys. Rev. Lett., 100 (2008).
doi: 10.1103/PhysRevLett.100.118703. |
[21] |
T. Li, J. Liu and W. E, Probabilistic framework for network partition,, Phys. Rev. E, 80 (2009).
doi: 10.1103/PhysRevE.80.026106. |
[22] |
F. D. Malliaros and M. Vazirgiannis, Clustering and community detection in directed networks: A survey,, Physics Reports, 533 (2013), 95.
doi: 10.1016/j.physrep.2013.08.002. |
[23] |
J. Mattingly, A. M. Stuart and D. J. Higham, Ergodicity for SDEs and approximations: Locally Lipschitz vector fields and degenerated noise,, Stochastic Process Appl., 101 (2002), 185.
doi: 10.1016/S0304-4149(02)00150-3. |
[24] |
P. Metzner, C. Schütte and E. Vanden-Eijnden, Transition path theory for markov jump processes,, Multiscale Modeling & Simulation, 7 (2008), 1192.
doi: 10.1137/070699500. |
[25] |
M. E. J. Newman, The structure and function of complex networks,, SIAM Review, 45 (2003), 167.
doi: 10.1137/S003614450342480. |
[26] |
M. E. J. Newman, Fast algorithm for detecting community structure in networks,, Phys. Rev. E, 69 (2004).
doi: 10.1103/PhysRevE.69.066133. |
[27] |
M. E. J. Newman, Modularity and community structure in networks,, Proceedings of the National Academy of Sciences, 103 (2006), 8577.
doi: 10.1073/pnas.0601602103. |
[28] |
V. Nicosia, G. Mangioni, V. Carchiolo and M. Malgeri, Extending the definition of modularity of directed graphs with overlapping communities,, Journal of Statistical Mechanics: Theory and Experiment, 2009 (2009).
doi: 10.1088/1742-5468/2009/03/P03024. |
[29] |
P. Pakoński, G. Tanner and K. .Zyczkowski, Families of line-graphs and their quantization,, Journal of Statistical Physics, 111 (2003), 1331.
doi: 10.1023/A:1023012502046. |
[30] |
G. Palla, I. Derenyi, I. Farkas and T. Vicsek, Uncovering the overlapping community structure of complex networks in nature and society,, Nature, 435 (2005), 814.
doi: 10.1038/nature03607. |
[31] |
M. A. Porter, J.-P. Onnela and P. J. Mucha, Communities in networks,, Notices of the American Mathematical Society, 56 (2009), 1082.
|
[32] |
H. Risken, The Fokker-Planck Equation,, Springer, (1996). Google Scholar |
[33] |
M. Sarich, N. Djurdjevac, S. Bruckner, T. O. F. Conrad and C. Schütte, Modularity revisited: A novel dynamics-based concept for decomposing complex networks,, Journal of Computational Dynamics, 1 (2014), 191.
doi: 10.3934/jcd.2014.1.191. |
[34] |
M. Sarich, F. Noé and C. Schütte, On the Approximation Quality of Markov State Models,, Multiscale Modeling & Simulation, 8 (2010), 1154.
doi: 10.1137/090764049. |
[35] |
M. Sarich, C. Schütte and E. Vanden-Eijnden, Optimal fuzzy aggregation of networks,, Multiscale Modeling & Simulation, 8 (2010), 1535.
doi: 10.1137/090758519. |
[36] |
M. T. Schaub, J.-C. Delvenne, S. N. Yaliraki and M. Barahona, Markov dynamics as a zooming lens for multiscale community detection: Non clique-like communities and the field-of-view limit,, PLoS ONE, 7 (2012).
doi: 10.1371/journal.pone.0032210. |
[37] |
M. T. Schaub, R. Lambiotte and M. Barahona, Encoding dynamics for multiscale community detection: Markov time sweeping for the map equation,, Phys. Rev. E, 86 (2012).
doi: 10.1103/PhysRevE.86.026112. |
[38] |
J. Schnakenberg, Network theory of microscopic and macroscopic behavior of master equation systems,, Rev. Mod. Phys., 48 (1976), 571.
doi: 10.1103/RevModPhys.48.571. |
[39] |
Ch. Schütte and M. Sarich, Metastability and Markov State Models in Molecular Dynamics: Modeling, Analysis, Algorithmic Approaches,, volume 24 of Courant Lecture Notes, (2013).
|
[40] |
A. Viamontes Esquivel and M. Rosvall, Compression of flow can reveal overlapping-module organization in networks,, Phys. Rev. X, 1 (2011).
doi: 10.1103/PhysRevX.1.021025. |
[41] |
R. K. P. Zia and B. Schmittmann, Probability currents as principal characteristics in the statistical mechanics of non-equilibrium steady states,, Journal of Statistical Mechanics-theory and Experiment, 2007 (2007).
doi: 10.1088/1742-5468/2007/07/P07012. |
[1] |
Yujuan Li, Huaifu Wang, Peipei Zhou, Guoshuang Zhang. Some properties of the cycle decomposition of WG-NLFSR. Advances in Mathematics of Communications, 2021, 15 (1) : 155-165. doi: 10.3934/amc.2020050 |
[2] |
Xiaoxian Tang, Jie Wang. Bistability of sequestration networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1337-1357. doi: 10.3934/dcdsb.2020165 |
[3] |
Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477 |
[4] |
Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257 |
[5] |
D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346 |
[6] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[7] |
Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020 doi: 10.3934/jcd.2021006 |
[8] |
Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond. A new model for the emergence of blood capillary networks. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2021001 |
[9] |
Leslaw Skrzypek, Yuncheng You. Feedback synchronization of FHN cellular neural networks. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021001 |
[10] |
Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020321 |
[11] |
Hongyan Guo. Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, , () : -. doi: 10.3934/era.2021008 |
[12] |
Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020404 |
[13] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[14] |
Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123 |
[15] |
Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020368 |
[16] |
Hongfei Yang, Xiaofeng Ding, Raymond Chan, Hui Hu, Yaxin Peng, Tieyong Zeng. A new initialization method based on normed statistical spaces in deep networks. Inverse Problems & Imaging, 2021, 15 (1) : 147-158. doi: 10.3934/ipi.2020045 |
[17] |
Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011 |
[18] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[19] |
Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327 |
[20] |
Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]