January  2015, 2(1): 25-50. doi: 10.3934/jcd.2015.2.25

Symmetry exploiting control of hybrid mechanical systems

1. 

Neuroscience and Robotics Laboratory, Northwestern University, Evanston, IL, United States

2. 

Chair of Applied Mathematics, University of Paderborn, Paderborn, Germany, Germany

Received  May 2014 Revised  April 2015 Published  August 2015

Symmetry properties such as invariances of mechanical systems can be beneficially exploited in solution methods for control problems. A recently developed approach is based on quantization by so called motion primitives. A library of these motion primitives forms an artificial hybrid system. In this contribution, we study the symmetry properties of motion primitive libraries of mechanical systems in the context of hybrid symmetries. Furthermore, the classical concept of symmetry in mechanics is extended to hybrid mechanical systems and an extended motion planning approach is presented.
Citation: Kathrin Flasskamp, Sebastian Hage-Packhäuser, Sina Ober-Blöbaum. Symmetry exploiting control of hybrid mechanical systems. Journal of Computational Dynamics, 2015, 2 (1) : 25-50. doi: 10.3934/jcd.2015.2.25
References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics,, Addison-Wesley, (1987).   Google Scholar

[2]

A. M. Bloch, N. E. Leonard and J. E. Marsden, Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem,, IEEE Transactions on Automatic Control, 45 (2000), 2253.  doi: 10.1109/9.895562.  Google Scholar

[3]

F. Bullo and A. D. Lewis, Geometric Control of Mechanical Systems, vol. 49 of Texts in Applied Mathematics,, Springer, (2005).  doi: 10.1007/978-1-4899-7276-7.  Google Scholar

[4]

M. Buss, M. Glocker, M. Hardt, O. von Stryk, R. Bulirsch and G. Schmidt, Nonlinear hybrid dynamical systems: Modeling, optimal control, and applications,, in Modelling, (2002), 311.  doi: 10.1007/3-540-45426-8_18.  Google Scholar

[5]

H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard, L. E. Kavraki and S. Thrun, Principles of Robot Motion: Theory, Algorithms, and Implementations,, MIT Press, (2005).   Google Scholar

[6]

K. Flaßkamp, S. Ober-Blöbaum and M. Kobilarov, Solving optimal control problems by exploiting inherent dynamical systems structures,, Journal of Nonlinear Science, 22 (2012), 599.  doi: 10.1007/s00332-012-9140-7.  Google Scholar

[7]

K. Flaßkamp, On the Optimal Control of Mechanical Systems - Hybrid Control Strategies and Hybrid Dynamics,, PhD thesis, (2013).   Google Scholar

[8]

E. Frazzoli, Robust Hybrid Control for Autonomous Vehicle Motion Planning,, PhD thesis, (2001).   Google Scholar

[9]

E. Frazzoli and F. Bullo, On quantization and optimal control of dynamical systems with symmetries,, in Proceedings of the 41st IEEE Conference on Decision and Control, 1 (2002), 817.  doi: 10.1109/CDC.2002.1184606.  Google Scholar

[10]

E. Frazzoli, M. A. Dahleh and E. Feron, Robust hybrid control for autonomous vehicle motion planning,, in Proceedings of the 39th IEEE Conference on Decision and Control, 1 (2000), 821.  doi: 10.1109/CDC.2000.912871.  Google Scholar

[11]

E. Frazzoli, M. A. Dahleh and E. Feron, Maneuver-based motion planning for nonlinear systems with symmetries,, IEEE Transactions on Robotics, 21 (2005), 1077.   Google Scholar

[12]

M. Golubitsky and I. Stewart, The Symmetry Perspective. From Equilibrium to Chaos in Phase Space and Physical Space,, vol. 200 of Progress in Mathematics, (2002).  doi: 10.1007/978-3-0348-8167-8.  Google Scholar

[13]

S. Hage-Packhäuser, Structural Treatment of Time-Varying Dynamical System Networks in the Light of Hybrid Symmetries,, PhD thesis, (2012).   Google Scholar

[14]

M. Kobilarov, Discrete Geometric Motion Control of Autonomous Vehicles,, PhD thesis, (2008).   Google Scholar

[15]

J. Lygeros, K. H. Johansson, S. N. Simić, J. Zhang and S. Sastry, Dynamical Properties of Hybrid Automata,, IEEE Transactions on Automatic Control, 48 (2003), 2.  doi: 10.1109/TAC.2002.806650.  Google Scholar

[16]

J. E. Marsden, Lectures on Mechanics,, no. 174 in London Mathematical Society Lecture Note Series, (1992).  doi: 10.1017/CBO9780511624001.  Google Scholar

[17]

J. E. Marsden, G. W. Patrick and S. Shkoller, Multisymplectic geometry, variational integrators, and nonlinear PDEs,, Communications in Mathematical Physics, 199 (1998), 351.  doi: 10.1007/s002200050505.  Google Scholar

[18]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, vol. 17 of Texts in Applied Mathematics,, 2nd edition, (1999).  doi: 10.1007/978-0-387-21792-5.  Google Scholar

[19]

J. E. Marsden, T. S. Ratiu and J. Scheurle, Reduction theory and the Lagrange-Routh equations,, Journal of Mathematical Physics, 41 (2000), 3379.  doi: 10.1063/1.533317.  Google Scholar

[20]

J. E. Marsden and J. Scheurle, Lagrangian reduction and the double spherical pendulum,, Zeitschrift für angewandte Mathematik und Physik (ZAMP), 44 (1993), 17.  doi: 10.1007/BF00914351.  Google Scholar

[21]

J. E. Marsden and M. West, Discrete mechanics and variational integrators,, Acta Numerica, 10 (2001), 357.  doi: 10.1017/S096249290100006X.  Google Scholar

[22]

S. Ober-Blöbaum, O. Junge and J. E. Marsden, Discrete mechanics and optimal control: an analysis,, Control, 17 (2011), 322.  doi: 10.1051/cocv/2010012.  Google Scholar

[23]

A. J. v. d. Schaft and H. Schumacher, An Introduction to Hybrid Dynamical Systems, vol. 251 of Lecture Notes in Control and Information Sciences,, Springer, (2000).   Google Scholar

[24]

S. N. Simić, K. H. Johansson, S. Sastry and J. Lygeros, Towards a Geometric Theory of Hybrid Systems,, Dynamics of Continuous, 12 (2005), 649.   Google Scholar

[25]

J. C. Simo, D. Lewis and J. E. Marsden, Stability of relative equilibria. Part I: The reduced energy-momentum method,, Archive for Rational Mechanics and Analysis, 115 (1991), 15.  doi: 10.1007/BF01881678.  Google Scholar

show all references

References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics,, Addison-Wesley, (1987).   Google Scholar

[2]

A. M. Bloch, N. E. Leonard and J. E. Marsden, Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem,, IEEE Transactions on Automatic Control, 45 (2000), 2253.  doi: 10.1109/9.895562.  Google Scholar

[3]

F. Bullo and A. D. Lewis, Geometric Control of Mechanical Systems, vol. 49 of Texts in Applied Mathematics,, Springer, (2005).  doi: 10.1007/978-1-4899-7276-7.  Google Scholar

[4]

M. Buss, M. Glocker, M. Hardt, O. von Stryk, R. Bulirsch and G. Schmidt, Nonlinear hybrid dynamical systems: Modeling, optimal control, and applications,, in Modelling, (2002), 311.  doi: 10.1007/3-540-45426-8_18.  Google Scholar

[5]

H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard, L. E. Kavraki and S. Thrun, Principles of Robot Motion: Theory, Algorithms, and Implementations,, MIT Press, (2005).   Google Scholar

[6]

K. Flaßkamp, S. Ober-Blöbaum and M. Kobilarov, Solving optimal control problems by exploiting inherent dynamical systems structures,, Journal of Nonlinear Science, 22 (2012), 599.  doi: 10.1007/s00332-012-9140-7.  Google Scholar

[7]

K. Flaßkamp, On the Optimal Control of Mechanical Systems - Hybrid Control Strategies and Hybrid Dynamics,, PhD thesis, (2013).   Google Scholar

[8]

E. Frazzoli, Robust Hybrid Control for Autonomous Vehicle Motion Planning,, PhD thesis, (2001).   Google Scholar

[9]

E. Frazzoli and F. Bullo, On quantization and optimal control of dynamical systems with symmetries,, in Proceedings of the 41st IEEE Conference on Decision and Control, 1 (2002), 817.  doi: 10.1109/CDC.2002.1184606.  Google Scholar

[10]

E. Frazzoli, M. A. Dahleh and E. Feron, Robust hybrid control for autonomous vehicle motion planning,, in Proceedings of the 39th IEEE Conference on Decision and Control, 1 (2000), 821.  doi: 10.1109/CDC.2000.912871.  Google Scholar

[11]

E. Frazzoli, M. A. Dahleh and E. Feron, Maneuver-based motion planning for nonlinear systems with symmetries,, IEEE Transactions on Robotics, 21 (2005), 1077.   Google Scholar

[12]

M. Golubitsky and I. Stewart, The Symmetry Perspective. From Equilibrium to Chaos in Phase Space and Physical Space,, vol. 200 of Progress in Mathematics, (2002).  doi: 10.1007/978-3-0348-8167-8.  Google Scholar

[13]

S. Hage-Packhäuser, Structural Treatment of Time-Varying Dynamical System Networks in the Light of Hybrid Symmetries,, PhD thesis, (2012).   Google Scholar

[14]

M. Kobilarov, Discrete Geometric Motion Control of Autonomous Vehicles,, PhD thesis, (2008).   Google Scholar

[15]

J. Lygeros, K. H. Johansson, S. N. Simić, J. Zhang and S. Sastry, Dynamical Properties of Hybrid Automata,, IEEE Transactions on Automatic Control, 48 (2003), 2.  doi: 10.1109/TAC.2002.806650.  Google Scholar

[16]

J. E. Marsden, Lectures on Mechanics,, no. 174 in London Mathematical Society Lecture Note Series, (1992).  doi: 10.1017/CBO9780511624001.  Google Scholar

[17]

J. E. Marsden, G. W. Patrick and S. Shkoller, Multisymplectic geometry, variational integrators, and nonlinear PDEs,, Communications in Mathematical Physics, 199 (1998), 351.  doi: 10.1007/s002200050505.  Google Scholar

[18]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, vol. 17 of Texts in Applied Mathematics,, 2nd edition, (1999).  doi: 10.1007/978-0-387-21792-5.  Google Scholar

[19]

J. E. Marsden, T. S. Ratiu and J. Scheurle, Reduction theory and the Lagrange-Routh equations,, Journal of Mathematical Physics, 41 (2000), 3379.  doi: 10.1063/1.533317.  Google Scholar

[20]

J. E. Marsden and J. Scheurle, Lagrangian reduction and the double spherical pendulum,, Zeitschrift für angewandte Mathematik und Physik (ZAMP), 44 (1993), 17.  doi: 10.1007/BF00914351.  Google Scholar

[21]

J. E. Marsden and M. West, Discrete mechanics and variational integrators,, Acta Numerica, 10 (2001), 357.  doi: 10.1017/S096249290100006X.  Google Scholar

[22]

S. Ober-Blöbaum, O. Junge and J. E. Marsden, Discrete mechanics and optimal control: an analysis,, Control, 17 (2011), 322.  doi: 10.1051/cocv/2010012.  Google Scholar

[23]

A. J. v. d. Schaft and H. Schumacher, An Introduction to Hybrid Dynamical Systems, vol. 251 of Lecture Notes in Control and Information Sciences,, Springer, (2000).   Google Scholar

[24]

S. N. Simić, K. H. Johansson, S. Sastry and J. Lygeros, Towards a Geometric Theory of Hybrid Systems,, Dynamics of Continuous, 12 (2005), 649.   Google Scholar

[25]

J. C. Simo, D. Lewis and J. E. Marsden, Stability of relative equilibria. Part I: The reduced energy-momentum method,, Archive for Rational Mechanics and Analysis, 115 (1991), 15.  doi: 10.1007/BF01881678.  Google Scholar

[1]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[2]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[3]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[4]

Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045

[5]

Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65

[6]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[7]

Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329

[8]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[9]

Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control & Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029

[10]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[11]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[12]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[13]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

[14]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[15]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020399

[16]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[17]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[18]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[19]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[20]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179

 Impact Factor: 

Metrics

  • PDF downloads (73)
  • HTML views (0)
  • Cited by (6)

[Back to Top]