January  2015, 2(1): 51-64. doi: 10.3934/jcd.2015.2.51

An elementary way to rigorously estimate convergence to equilibrium and escape rates

1. 

Dipartimento di Matematica Applicata, Università di Pisa, Via Bonanno Pisano

2. 

Instituto de Matemática, UFRJ Av. Athos da Silveira Ramos 149, Centro de Tecnologia, Bloco C Cidade Universitária, Ilha do Fundão, Caixa Postal 68530 21941-909 Rio de Janeiro, RJ, Brazil

3. 

Laboratoire de Mathématiques, CNRS UMR 6205, Université de Bretagne Occidentale, 6 av. Victor Le Gorgeu, CS 93837, 29238 BREST Cedex 3

Received  April 2014 Revised  January 2015 Published  August 2015

We show an elementary method to obtain (finite time and asymptotic) computer assisted explicit upper bounds on convergence to equilibrium (decay of correlations) and escape rates for systems satisfying a Lasota Yorke inequality. The bounds are deduced from the ones of suitable approximations of the system's transfer operator. We also present some rigorous experiments on some nontrivial example.
Citation: Stefano Galatolo, Isaia Nisoli, Benoît Saussol. An elementary way to rigorously estimate convergence to equilibrium and escape rates. Journal of Computational Dynamics, 2015, 2 (1) : 51-64. doi: 10.3934/jcd.2015.2.51
References:
[1]

V. Araujo, S. Galatolo and M. J. Pacifico, Decay of correlations for maps with uniformly contracting fibers and logarithm law for singular hyperbolic attractors,, Mathematiche Zeitcrift, 276 (2014), 1001.  doi: 10.1007/s00209-013-1231-0.  Google Scholar

[2]

W. Bahsoun, C. Bose and G. Froyland, (Eds.), Ergodic Theory, Open Dynamics, and Coherent Structures,, Springer Proceedings in Mathematics & Statistics, (2014).  doi: 10.1007/978-1-4939-0419-8.  Google Scholar

[3]

W. Bahsoun, Rigorous numerical approximation of escape rates,, Nonlinearity, 19 (2006), 2529.  doi: 10.1088/0951-7715/19/11/002.  Google Scholar

[4]

W. Bahsoun and C. Bose, Invariant densities and escape rates: Rigorous and computable approximations in the $L^{\infty }$,, Nonlinear Analysis, 74 (2011), 4481.  doi: 10.1016/j.na.2011.04.012.  Google Scholar

[5]

V. Baladi and M. Holschneider, Approximation of nonessential spectrum of transfer operators,, Nonlinearity Nonlinearity, 12 (1999), 525.  doi: 10.1088/0951-7715/12/3/006.  Google Scholar

[6]

L. Barreira and B. Saussol, Hausdorff dimension of measures via Poincaré recurrence,, Comm. Math. Phys., 219 (2001), 443.  doi: 10.1007/s002200100427.  Google Scholar

[7]

C. Bose, G. Froyland, C. Gonzales-Tokman and R. Murray, Ulam's Method for Lasota Yorke maps with holes,, , ().   Google Scholar

[8]

M. D. Boshernitzan, Quantitative recurrence results,, Inv. Math., 113 (1993), 617.  doi: 10.1007/BF01244320.  Google Scholar

[9]

M. Dellnitz and O. Junge, Set oriented numerical methods for dynamical systems,, Handbook of dynamical systems, 2 (2002), 221.  doi: 10.1016/S1874-575X(02)80026-1.  Google Scholar

[10]

G. Froyland, Extracting dynamical behaviour via Markov models,, in Alistair Mees, (1998), 281.   Google Scholar

[11]

G. Froyland, Computer-assisted bounds for the rate of decay of correlations,, Comm. Math. Phys., 189 (1997), 237.  doi: 10.1007/s002200050198.  Google Scholar

[12]

S. Galatolo and I. Nisoli, An elementary approach to rigorous approximation of invariant measures,, SIAM J. Appl Dyn Sys., 13 (2014), 958.  doi: 10.1137/130911044.  Google Scholar

[13]

S. Galatolo, Dimension and hitting time in rapidly mixing systems,, Math. Res. Lett., 14 (2007), 797.  doi: 10.4310/MRL.2007.v14.n5.a8.  Google Scholar

[14]

S. Galatolo and I. Nisoli, Rigorous computation of invariant measures and fractal dimension for piecewise hyperbolic maps: 2D Lorenz like maps,, , ().   Google Scholar

[15]

B. Hunt, Estimating invariant measures and Lyapunov exponents,, Erg. Th. Dyn. Sys., 16 (1996), 735.  doi: 10.1017/S014338570000907X.  Google Scholar

[16]

G. Keller and C. Liverani, Stability of the spectrum for transfer operators,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28 (1999), 141.   Google Scholar

[17]

O. Ippei, Computer-assisted verification method for invariant densities and rates of decay of correlations,, SIAM J. Applied Dynamical Systems, 10 (2011), 788.  doi: 10.1137/09077864X.  Google Scholar

[18]

O. E. Lanford III, Informal remarks on the orbit structure of discrete approximations to chaotic maps,, Exp. Math., 7 (1998), 317.  doi: 10.1080/10586458.1998.10504377.  Google Scholar

[19]

A. Lasota and J. Yorke, On the existence of invariant measures for piecewise monotonic transformations,, Trans. Amer. Math. Soc., 186 (1973), 481.  doi: 10.1090/S0002-9947-1973-0335758-1.  Google Scholar

[20]

C. Liverani, Rigorous numerical investigations of the statistical properties of piecewise expanding maps-A feasibility study,, Nonlinearity, 14 (2001), 463.  doi: 10.1088/0951-7715/14/3/303.  Google Scholar

[21]

C. Liverani, Invariant Measures and Their Properties. A Functional Analytic Point of View,, Dynamical Systems. Part II: Topological Geometrical and Ergodic Properties of Dynamics. Centro di Ricerca Matematica, (2004).   Google Scholar

show all references

References:
[1]

V. Araujo, S. Galatolo and M. J. Pacifico, Decay of correlations for maps with uniformly contracting fibers and logarithm law for singular hyperbolic attractors,, Mathematiche Zeitcrift, 276 (2014), 1001.  doi: 10.1007/s00209-013-1231-0.  Google Scholar

[2]

W. Bahsoun, C. Bose and G. Froyland, (Eds.), Ergodic Theory, Open Dynamics, and Coherent Structures,, Springer Proceedings in Mathematics & Statistics, (2014).  doi: 10.1007/978-1-4939-0419-8.  Google Scholar

[3]

W. Bahsoun, Rigorous numerical approximation of escape rates,, Nonlinearity, 19 (2006), 2529.  doi: 10.1088/0951-7715/19/11/002.  Google Scholar

[4]

W. Bahsoun and C. Bose, Invariant densities and escape rates: Rigorous and computable approximations in the $L^{\infty }$,, Nonlinear Analysis, 74 (2011), 4481.  doi: 10.1016/j.na.2011.04.012.  Google Scholar

[5]

V. Baladi and M. Holschneider, Approximation of nonessential spectrum of transfer operators,, Nonlinearity Nonlinearity, 12 (1999), 525.  doi: 10.1088/0951-7715/12/3/006.  Google Scholar

[6]

L. Barreira and B. Saussol, Hausdorff dimension of measures via Poincaré recurrence,, Comm. Math. Phys., 219 (2001), 443.  doi: 10.1007/s002200100427.  Google Scholar

[7]

C. Bose, G. Froyland, C. Gonzales-Tokman and R. Murray, Ulam's Method for Lasota Yorke maps with holes,, , ().   Google Scholar

[8]

M. D. Boshernitzan, Quantitative recurrence results,, Inv. Math., 113 (1993), 617.  doi: 10.1007/BF01244320.  Google Scholar

[9]

M. Dellnitz and O. Junge, Set oriented numerical methods for dynamical systems,, Handbook of dynamical systems, 2 (2002), 221.  doi: 10.1016/S1874-575X(02)80026-1.  Google Scholar

[10]

G. Froyland, Extracting dynamical behaviour via Markov models,, in Alistair Mees, (1998), 281.   Google Scholar

[11]

G. Froyland, Computer-assisted bounds for the rate of decay of correlations,, Comm. Math. Phys., 189 (1997), 237.  doi: 10.1007/s002200050198.  Google Scholar

[12]

S. Galatolo and I. Nisoli, An elementary approach to rigorous approximation of invariant measures,, SIAM J. Appl Dyn Sys., 13 (2014), 958.  doi: 10.1137/130911044.  Google Scholar

[13]

S. Galatolo, Dimension and hitting time in rapidly mixing systems,, Math. Res. Lett., 14 (2007), 797.  doi: 10.4310/MRL.2007.v14.n5.a8.  Google Scholar

[14]

S. Galatolo and I. Nisoli, Rigorous computation of invariant measures and fractal dimension for piecewise hyperbolic maps: 2D Lorenz like maps,, , ().   Google Scholar

[15]

B. Hunt, Estimating invariant measures and Lyapunov exponents,, Erg. Th. Dyn. Sys., 16 (1996), 735.  doi: 10.1017/S014338570000907X.  Google Scholar

[16]

G. Keller and C. Liverani, Stability of the spectrum for transfer operators,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28 (1999), 141.   Google Scholar

[17]

O. Ippei, Computer-assisted verification method for invariant densities and rates of decay of correlations,, SIAM J. Applied Dynamical Systems, 10 (2011), 788.  doi: 10.1137/09077864X.  Google Scholar

[18]

O. E. Lanford III, Informal remarks on the orbit structure of discrete approximations to chaotic maps,, Exp. Math., 7 (1998), 317.  doi: 10.1080/10586458.1998.10504377.  Google Scholar

[19]

A. Lasota and J. Yorke, On the existence of invariant measures for piecewise monotonic transformations,, Trans. Amer. Math. Soc., 186 (1973), 481.  doi: 10.1090/S0002-9947-1973-0335758-1.  Google Scholar

[20]

C. Liverani, Rigorous numerical investigations of the statistical properties of piecewise expanding maps-A feasibility study,, Nonlinearity, 14 (2001), 463.  doi: 10.1088/0951-7715/14/3/303.  Google Scholar

[21]

C. Liverani, Invariant Measures and Their Properties. A Functional Analytic Point of View,, Dynamical Systems. Part II: Topological Geometrical and Ergodic Properties of Dynamics. Centro di Ricerca Matematica, (2004).   Google Scholar

[1]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

[2]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[3]

Sergio Zamora. Tori can't collapse to an interval. Electronic Research Archive, , () : -. doi: 10.3934/era.2021005

[4]

Manuel Friedrich, Martin Kružík, Ulisse Stefanelli. Equilibrium of immersed hyperelastic solids. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021003

[5]

Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313

[6]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[7]

Tinghua Hu, Yang Yang, Zhengchun Zhou. Golay complementary sets with large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2021, 15 (1) : 23-33. doi: 10.3934/amc.2020040

[8]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[9]

Matania Ben–Artzi, Joseph Falcovitz, Jiequan Li. The convergence of the GRP scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 1-27. doi: 10.3934/dcds.2009.23.1

[10]

Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107

[11]

Madhurima Mukhopadhyay, Palash Sarkar, Shashank Singh, Emmanuel Thomé. New discrete logarithm computation for the medium prime case using the function field sieve. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020119

[12]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[13]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[14]

Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260

[15]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[16]

Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020367

[17]

Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29

[18]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[19]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[20]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

 Impact Factor: 

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]